E-Book, Englisch, 313 Seiten, eBook
Paprotny / Thess Realtime Data Mining
1. Auflage 2013
ISBN: 978-3-319-01321-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Self-Learning Techniques for Recommendation Engines
E-Book, Englisch, 313 Seiten, eBook
Reihe: Applied and Numerical Harmonic Analysis
ISBN: 978-3-319-01321-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Brave New Realtime World – Introduction.- 2 Strange Recommendations? – On The Weaknesses Of Current Recommendation Engines.- 3 Changing Not Just Analyzing – Control Theory And Reinforcement Learning.- 4 Recommendations As A Game – Reinforcement Learning For Recommendation Engines.- 5 How Engines Learn To Generate Recommendations – Adaptive Learning Algorithms.- 6 Up The Down Staircase – Hierarchical Reinforcement Learning.- 7 Breaking Dimensions – Adaptive Scoring With Sparse Grids.- 8 Decomposition In Transition - Adaptive Matrix Factorization.- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization.- 10 The Big Picture – Towards A Synthesis Of Rl And Adaptive Tensor Factorization.- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests.- 12 Building A Recommendation Engine – The Xelopes Library.- 13 Last Words – Conclusion.- References.- Summary Of Notation.