E-Book, Englisch, 312 Seiten
Pardo / Matuszyk / Puzyrev Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods
1. Auflage 2021
ISBN: 978-0-12-821465-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 312 Seiten
ISBN: 978-0-12-821465-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods provides a comprehensive review of different resistivity and sonic logging instruments used within the oil industry, along with precise and solid mathematical descriptions of the physical equations and corresponding FE formulations that govern these measurements. Additionally, the book emphasizes the main modeling considerations that one needs to incorporate into the simulations in order to obtain reliable and accurate results. Essentially, the formulations and methods described here can also be applied to simulate on-surface geophysical measurements such as seismic or marine controlled-source electromagnetic (CSEM) measurements. Simulation results obtained using FE methods are superior. FE methods employ a mathematical terminology based on FE spaces that facilitate the design of sophisticated formulations and implementations according to the specifics of each problem. This mathematical FE framework provides a highly accurate, robust, and flexible unified environment for the solution of multi-physics problems. Thus, readers will benefit from this resource by learning how to make a variety of logging simulations using a unified FE framework. - Provides a complete and unified finite element approach to perform borehole sonic and electromagnetic simulations - Includes the latest research in mathematical and implementation content on Finite Element simulations of borehole logging measurements - Features a variety of unique simulations and numerical examples that allow the reader to easily learn the main features and limitations that appear when simulating borehole resistivity measurements
David Pardo is a Research Professor at Ikerbasque, the University of the Basque Country UPV/EHU, and the Basque Center for Applied Mathematics (BCAM). He has published over 160 research articles and he has given over 260 presentations. He is now the PI of the research group on Applied Mathematical Modeling, Statistics, and Optimization (MATHMODE). His research interests include computational electromagnetics, petroleum-engineering applications (borehole simulations), adaptive finite-element and discontinuous Petrov-Galerkin methods, multigrid solvers, image restoration algorithms, and multiphysics and inverse problems.