E-Book, Englisch, 137 Seiten, eBook
Patel G. C. / Chate / Parappagoudar Machining of Hard Materials
1. Auflage 2020
ISBN: 978-3-030-40102-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Comprehensive Approach to Experimentation, Modeling and Optimization
E-Book, Englisch, 137 Seiten, eBook
Reihe: SpringerBriefs in Applied Sciences and Technology
ISBN: 978-3-030-40102-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;1 Introduction to Hard Materials and Machining Methods;11
3.1;1.1 Introduction;11
3.2;1.2 Hard Materials;14
3.3;1.3 Machining Methods of Hard Materials;14
3.3.1;1.3.1 Hard Turning;15
3.3.2;1.3.2 Hard Broaching;16
3.3.3;1.3.3 Hard Boring;17
3.3.4;1.3.4 Hard Milling;18
3.4;1.4 Challenges in Machining of Hard Materials;19
3.4.1;1.4.1 Steels;19
3.4.2;1.4.2 Titanium and Its Alloys;19
3.4.3;1.4.3 Super-Alloys;20
3.4.4;1.4.4 Composite Materials and Metal Matrix Composites;20
3.4.5;1.4.5 Ceramics;22
3.5;1.5 Industrial Applications of Machined Hard Materials;22
3.6;1.6 Cutting Tool Materials;23
3.6.1;1.6.1 High-Speed Steel (HSS);24
3.6.2;1.6.2 Cemented Carbides;24
3.6.3;1.6.3 Ceramics;25
3.6.4;1.6.4 Carbon Boron Nitride (CBN) Tools;26
3.6.5;1.6.5 Polycrystalline Diamond (PCD);27
3.7;1.7 Selection of Cutting Tool Materials and Geometry;27
3.8;1.8 Advantages in Machining Hard Materials with Conventional Machining;29
3.9;References;30
4;2 Studies on Machining of Hard Materials;35
4.1;2.1 Hard Turning Process;35
4.2;2.2 Classical Engineering Experimental Approach or One Factor at a Time (OFAT);37
4.3;2.3 Numerical Modelling Approach;37
4.4;2.4 Input–Output and In-Process Parameter Relationship Modelling;40
4.4.1;2.4.1 Taguchi Method;41
4.4.2;2.4.2 Response Surface Methodology (RSM);46
4.4.3;2.4.3 Desirability Function Approach (DFA);48
4.4.4;2.4.4 Soft Computing Optimization Tools;49
4.5;2.5 Capabilities of Hard Turning Process;50
4.5.1;2.5.1 Variables of Hard Turning Process;50
4.6;2.6 Conclusion;55
4.7;References;55
5;3 Experimentation, Modelling, and Analysis of Machining of Hard Material;62
5.1;3.1 Selection of Experimental Design;64
5.2;3.2 Workpiece and Tool Material;66
5.3;3.3 Experiment Details;66
5.3.1;3.3.1 Material Removal Rate;67
5.3.2;3.3.2 Surface Roughness;68
5.3.3;3.3.3 Cylindricity and Circularity Error;68
5.4;3.4 Results and Discussion;69
5.4.1;3.4.1 Response: MRR;69
5.4.2;3.4.2 Response: SR;70
5.4.3;3.4.3 Response: CE;74
5.4.4;3.4.4 Response: Ce;76
5.5;3.5 Regression Model Validation;76
5.6;3.6 Concluding Remarks;79
5.7;References;80
6;4 Intelligent Modelling of Hard Materials Machining;81
6.1;4.1 Advantages of Artificial Intelligence Over Statistical Methods;81
6.2;4.2 Neural Networks;82
6.3;4.3 Modelling of Hard Turning Process;84
6.4;4.4 Data Collection for NN Modelling;85
6.4.1;4.4.1 Training Data;85
6.4.2;4.4.2 Testing Data;86
6.5;4.5 NN Modelling of Hard Turning Process;86
6.5.1;4.5.1 Forward Modelling;87
6.5.2;4.5.2 Reverse Modelling;87
6.6;4.6 Back-Propagation Neural Network (BPNN);89
6.6.1;4.6.1 Weights;90
6.6.2;4.6.2 Hidden Layers and Neurons;90
6.6.3;4.6.3 Learning Rate and Momentum Constant;90
6.6.4;4.6.4 Constants of Activation Function;91
6.6.5;4.6.5 Bias;91
6.7;4.7 Genetic Algorithm Neural Network (GA-NN);91
6.7.1;4.7.1 Selection;92
6.7.2;4.7.2 Crossover;92
6.7.3;4.7.3 Mutation;92
6.8;4.8 Results of Forward Mapping;93
6.8.1;4.8.1 BPNN;93
6.8.2;4.8.2 GA-NN;93
6.8.3;4.8.3 Summary Results of Forward Mapping;95
6.9;4.9 Reverse Mapping;100
6.9.1;4.9.1 Back-Propagation NN;101
6.9.2;4.9.2 Genetic Algorithm NN;101
6.9.3;4.9.3 Summary Results of Reverse Mapping;102
6.10;4.10 Conclusions;106
6.11;References;107
7;5 Optimization of Machining of Hard Material;111
7.1;5.1 Genetic Algorithm;112
7.2;5.2 Particle Swarm Optimization (PSO);114
7.3;5.3 Teaching–Learning-Based Algorithm (TLBO);115
7.3.1;5.3.1 Teacher Phase;116
7.3.2;5.3.2 Learner Phase;118
7.4;5.4 JAYA Algorithm;118
7.5;5.5 Modelling and Optimization for Machining Process;119
7.6;5.6 Mathematical Formulation for Multi-objective Optimization;124
7.7;5.7 Results of Parameter Study of Algorithms (GA, PSO, TLBO, and JAYA);126
7.7.1;5.7.1 Genetic Algorithm;126
7.7.2;5.7.2 Particle Swarm Optimization;127
7.7.3;5.7.3 Teaching–Learning-Based Optimization and JAYA Algorithm;127
7.8;5.8 Summary of Optimization Results;130
7.9;5.9 Validation Experiments;130
7.10;5.10 Tool Wear Studies;132
7.11;5.11 Conclusions;133
7.12;References;134
8;Index;137