Pfahringer / Holmes / Hoffman | Discovery Science | Buch | 978-3-642-16183-4 | sack.de

Buch, Englisch, Band 6332, 384 Seiten, Gewicht: 603 g

Reihe: Lecture Notes in Computer Science

Pfahringer / Holmes / Hoffman

Discovery Science

13th International Conference, DS 2010, Canberra, Australia, October 6-8, 2010, Proceedings
1. Auflage 2010
ISBN: 978-3-642-16183-4
Verlag: Springer

13th International Conference, DS 2010, Canberra, Australia, October 6-8, 2010, Proceedings

Buch, Englisch, Band 6332, 384 Seiten, Gewicht: 603 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-642-16183-4
Verlag: Springer


This book constitutes the refereed proceedings of the 13th International Conference on Discovery Science, DS 2010, held in Canberra, Australia, in October 2010.
The 25 revised full papers presented were carefully selected from 43 submissions and include the first part of the book. In a second part invited talks of ALT 2010 and DS 2010 are presented.
The scope of the conference is the exchange of new ideas and information among researchers working in the area of automatic scientific discovery or working on tools for supporting the human process of discovery in science.

Pfahringer / Holmes / Hoffman Discovery Science jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Sentiment Knowledge Discovery in Twitter Streaming Data.- A Similarity-Based Adaptation of Naive Bayes for Label Ranking: Application to the Metalearning Problem of Algorithm Recommendation.- Topology Preserving SOM with Transductive Confidence Machine.- An Artificial Experimenter for Enzymatic Response Characterisation.- Subgroup Discovery for Election Analysis: A Case Study in Descriptive Data Mining.- On Enumerating Frequent Closed Patterns with Key in Multi-relational Data.- Why Text Segment Classification Based on Part of Speech Feature Selection.- Speeding Up and Boosting Diverse Density Learning.- Incremental Learning of Cellular Automata for Parallel Recognition of Formal Languages.- Sparse Substring Pattern Set Discovery Using Linear Programming Boosting.- Discovery of Super-Mediators of Information Diffusion in Social Networks.- Integer Linear Programming Models for Constrained Clustering.- Efficient Visualization of Document Streams.- Bridging Conjunctive and Disjunctive Search Spaces for Mining a New Concise and Exact Representation of Correlated Patterns.- Graph Classification Based on Optimizing Graph Spectra.- Algorithm for Detecting Significant Locations from Raw GPS Data.- Discovery of Conservation Laws via Matrix Search.- Gaussian Clusters and Noise: An Approach Based on the Minimum Description Length Principle.- Exploiting Code Redundancies in ECOC.- Concept Convergence in Empirical Domains.- Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung.- Mining Class-Correlated Patterns for Sequence Labeling.- ESTATE: Strategy for Exploring Labeled Spatial Datasets Using Association Analysis.- Adapted Transfer of Distance Measures for Quantitative Structure-Activity Relationships.- Incremental Mining of Closed Frequent Subtrees.- Optimal Online Prediction in Adversarial Environments.- Discovery of Abstract Concepts by a Robot.- Contrast Pattern Mining and Its Application for Building Robust Classifiers.- Towards General Algorithms for Grammatical Inference.- The Blessing and the Curse of the Multiplicative Updates.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.