Buch, Deutsch, Band 33, 183 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 246 g
Reihe: Wissenschaft und Kultur
Buch, Deutsch, Band 33, 183 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 246 g
Reihe: Wissenschaft und Kultur
ISBN: 978-3-0348-5763-5
Verlag: Springer
Entwicklungsgesetzen der Mathematik an einem ganz konkreten Beispiel nachzuspiiren ist del' Sinn dieses Buches, das dem 200. Geburtstag von CARL FRIEDRICH GAUSS gewidmet ist. Das Beispiel ist das Reziprozitats gesetz der quadratischen Reste, das GAUSS - wie schon einige seiner Vorganger - aus einem groBen Zahlenmaterial vermutungsweise ablas, aber als erster gleichsam mit Gewalt durch vollstandige Induktion verifi zierte, ohne damit dem "Wesen" dieser eigenartigen GesetzmaBigkeit naherzukommen. Die nachsten Stufen der Entwicklung tiirmte GAUSS iiber-und nebeneinander mit der Absicht, durch moglichst verschieden artige Beweismethoden (GauBsches Lemma, Einordnung in die GauBsche Theorie der quadratischen Formen und der Kreisteilung), Erweiterung des Themas (kubische und biquadratische Reste) und des Zahlenbereiches (ganze GauBsche Zahlen) den Weg zu allgemeinen GesetzmaBigkeiten zu eroffnen. Die Arbeit vieler groBer Mathematiker nach GAUSS war notig, um den Weg bis zu einem Gipfel zu verfolgen: Als allgemeiner Rahmen bildete sich die algebraische Zahlentheorie heraus und darin die Klassen korpertheorie, die 1927 mit ARTINS allgemeinem Reziprozitatsgesetz ihren Hohepunkt erreichte. Damit war die GauBsche Vermutung bestatigt, da das quadratische Reziprozitatsgesetz jetzt nur noch als besonders ein facher Spezialfall des Artinschen Reziprozitatsgesetzes erscheint. 1m vollen Umfang konnte diese etwa 130jahrige Entwicklung in diesem Buch natiirlich nicht dargestellt werden, um so ausfiihrlicher dafiir aber die einigermaBen elementaren ·Teile des Beitrages, den GAUSS als Weg bereiter der Reziprozitatsgesetze geleistet hat, womit er zum Pionier der modernen algebraischen Zahlentheorie geworden ist.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Überblick.- Übersicht über die hier gegebenen Beweise des quadratischen Reziprozitätsgesetzes.- Einführung. Quadratische Reste.- Thema. Beweis des quadratischen Reziprozitätsgesetzes.- Das Legendre-Jacobi-Symbol.- Vollständige Induktion ohne den Gaußschen Existenzsatz.- Das Gaußsche Lemma.- Anzahl der negativen Minimalreste.- Gaußsches Lemma und Gitterpunkte.- Vorzeichen eines Produktes (Mit Gaußschem Lemma).- Vorzeichen eines Produktes (Mit Gaußschem Existenzsatz und Induktion).- Das Gauß-Symbol (Verallgemeinertes Gaußsches Lemma).- Permutationen.- Gaußsche Summen (mit Vorzeichenbestimmung).- Kreisteilung (Gaußsche Summen ohne Vorzeichenbestimmung).- Gaußsche Summen in endlichen Körpern.- Die quadratische Gleichung x 2 +x+ 1#x2212;( #x2212;1 q )q 4 =0 $${x^2} + x + \frac{{1 - \left( {\frac{{ - 1}}{q}} \right)q}}{4} = 0$$ in F p.- Faktorzerlegung gewisser Polynome in F p.