E-Book, Englisch, 514 Seiten
Popkov Mathematical Demoeconomy
1. Auflage 2014
ISBN: 978-3-11-033916-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Integrating Demographic and Economic Approaches
E-Book, Englisch, 514 Seiten
ISBN: 978-3-11-033916-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Scientific researches in demographic and economic fields, Academi
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftstheorie, Wirtschaftsphilosophie
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
Weitere Infos & Material
1;Preface;5
2;Part I General principles of demoeconomics;15
2.1;1 The population-economy system;17
2.1.1;1.1 General characteristics of the population-economy system;17
2.1.2;1.2 Mathematical modeling of the PE system: specific features;21
2.1.2.1;1.2.1 Principles of mathematical modeling;22
2.1.2.2;1.2.2 Nonlinear processes;23
2.1.2.3;1.2.3 Temporal hierarchy;23
2.1.2.4;1.2.4 Spatial hierarchy;24
2.1.3;1.3 Forecasting of demoeconomic development;25
2.2;2 Probabilistic techniques in demoeconomic forecasting;30
2.2.1;2.1 Uncertainty in the PE system;30
2.2.2;2.2 Demoeconomic forecasting: the structure of probabilistic technique;33
3;Part II Foundations of spatial demography;37
3.1;3 The population system;39
3.1.1;3.1 Key notions;39
3.1.2;3.2 State indicators of population;43
3.1.3;3.3 States evolution in a demographic process: general modeling principles;46
3.1.3.1;3.3.1 Structuring based on sex and space;47
3.1.3.2;3.3.2 Structuring based on sex, age and space;48
3.2;4 Demographic characteristics of fertility;50
3.2.1;4.1 Phenomenology of newborns distribution by maternal ages;50
3.2.2;4.2 Entropy model of age-specific fertility rate;53
3.2.3;4.3 Iterative method of age-specific fertility rate recovery;58
3.2.4;4.4 Dynamics of fertility rates;63
3.2.4.1;4.4.1 Dynamic model of total fertility rate;63
3.2.4.2;4.4.2 Dynamic model of age-specific fertility rate;71
3.3;5 Demographic characteristics of mortality;74
3.3.1;5.1 Phenomenology of mortality;74
3.3.2;5.2 Entropy model of sex-age distribution of mortality rate;76
3.3.2.1;5.2.1 Model construction;76
3.3.2.2;5.2.2 Model analysis;79
3.3.3;5.3 Parameter identification for the entropy model of mortality based on real data;81
3.3.4;5.4 Entropy decomposition of age-specific distribution of mortality by classes of diseases;90
3.3.5;5.5 Dynamic model of total mortality rate;96
3.4;6 Demographic characteristics of migration;101
3.4.1;6.1 General phenomenology of migration;102
3.4.2;6.2 Entropy-optimal distribution of migration flows;106
3.4.3;6.3 Optimality conditions for entropy models of migration;118
3.4.4;6.4 Parametric properties in entropy models of migration;122
3.4.4.1;6.4.1 Parametric properties of the B-model with complete consumption of resources;126
3.4.4.2;6.4.2 An example of analyzing the parametric properties of the B-model of migration flows;130
3.4.4.3;6.4.3 Parametric properties of the F-model with complete consumption of resources;140
3.5;7 Macrosystem models of population dynamics;146
3.5.1;7.1 Dynamics of isolated population;146
3.5.1.1;7.1.1 Deterministic functions of fertility and mortality;146
3.5.1.2;7.1.2 Random functions of fertility and mortality;153
3.5.2;7.2 Macrosystem dynamic model with linear reproduction of population and balanced emigration;156
3.5.2.1;7.2.1 Stationary states;158
3.5.2.2;7.2.2 Stability of stationary states;161
3.5.3;7.3 Stable stationary states of spatial distribution of population: an example of scenario forecasting;167
3.5.4;7.4 General macrosystem model of population size dynamics;171
3.5.4.1;7.4.1 Stationary states;175
3.5.4.2;7.4.2 Stability of stationary states;176
4;Part III Foundations of spatial economics;181
4.1;8 Modeling economics;183
4.1.1;8.1 Political economy, micro- and macroeconomics, mathematical economics: objects and goals;184
4.1.2;8.2 Behavioral models for economic agents;190
4.1.2.1;8.2.1 Models of rational behavior;191
4.1.2.2;8.2.2 Models of compromise behavior;194
4.1.2.3;8.2.3 Models of stochastic behavior;201
4.2;9 Evolutionary economics;205
4.2.1;9.1 General principles of evolutionary economics;205
4.2.2;9.2 Market equilibriumand stability;206
4.2.3;9.3 Innovation activity of economic agents;210
4.2.3.1;9.3.1 External investments;213
4.2.3.2;9.3.2 Internal investments;216
4.2.4;9.4 Economic growth;220
4.3;10 Self-organization in economic systems;225
4.3.1;10.1 General notions;225
4.3.2;10.2 Phenomenology of the model of competitive firms. Determination of transitions;227
4.3.3;10.3 Construction of utility functions. Evaluation of transition rates;231
4.3.4;10.4 Equations of the model. Stationary states;234
4.3.5;10.5 Stability of stationary states;240
4.4;11 Spatial interaction of economic systems;246
4.4.1;11.1 Entropy model of spatial economic interaction;246
4.4.2;11.2 Economic system with triangular spatial structure;257
4.5;12 Selected models of spatial macroeconomics;262
4.5.1;12.1 Entropy decomposition;262
4.5.2;12.2 Spatial interaction of economic clusters;270
4.5.2.1;12.2.1 Static interaction;272
4.5.2.2;12.2.2 Dynamic interaction;275
4.5.3;12.3 Model of economic systems exchanging investments;278
4.5.3.1;12.3.1 Singular stationary states;281
4.5.3.2;12.3.2 Stability of singular stationary states;283
4.6;13 Fluctuations in models of spatial economics;295
4.6.1;13.1 Downturns and upturns in economic activity;295
4.6.2;13.2 The immersion method for periodic solutions;296
4.6.3;13.3 Periodic solutions to generating system: application of the Laplace transform;300
5;Part IV Macrosystem models of demoeconomics;311
5.1;14 Macrosystems concept in demoeconomics;313
5.1.1;14.1 Phenomenology of demoeconomics;313
5.1.1.1;14.1.1 The systems character of demoeconomic processes;314
5.1.1.2;14.1.2 The individual and the collective;315
5.1.1.3;14.1.3 Time scales;315
5.1.2;14.2 Macrosystems concept of demoeconomics: model representation;317
5.1.3;14.3 The Monte Carlo method in probabilisticmacrosystem modeling of demoeconomic processes;319
5.2;15 One-sector macrosystem demoeconomic model (MSDEM );324
5.2.1;15.1 Structure and basic variables of the model;324
5.2.2;15.2 Equations of one-sector MSDEM;327
5.2.2.1;15.2.1 The block 1sEM;327
5.2.2.2;15.2.2 The block MSDM;330
5.2.3;15.3 An example of one-sector MSDEM;334
5.2.3.1;15.3.1 Equations of the model;335
5.2.3.2;15.3.2 Analytic treatment of the simplified one-sector MSDEM;338
5.2.3.3;15.3.3 Computer experiments with the one-sector MSDEM;341
5.2.3.4;15.3.4 Analytic treatment and computer experiments with the one-sector PMSDEM;347
5.3;16 Macrosystem demoeconomic model with regional localization of sectors (branches) Ns-MSDEM;353
5.3.1;16.1 Structure and basic variables of the model;353
5.3.2;16.2 Equations of Ns - MSDEM with resource exchange on regional markets;358
5.3.2.1;16.2.1 The block NsEM;358
5.3.2.2;16.2.2 The block MSDM;363
5.3.2.3;16.2.3 The block TRM;365
5.3.3;16.3 An example of analytic treatment of Ns - MSDEM;366
5.3.3.1;16.3.1 Equations of the model;366
5.3.3.2;16.3.2 Stationary states;368
5.3.4;16.4 Computer analysis of Ns - MSDEM;372
5.3.4.1;16.4.1 Equations of the model;372
5.4;17 Macrosystem model of labour market;385
5.4.1;17.1 Quantitative state indicators of labour market;385
5.4.2;17.2 Structure and equations of the model;387
5.4.3;17.3 Competition among cohorts;389
5.4.3.1;17.3.1 Intrinsic competitive ability;390
5.4.3.2;17.3.2 The comparative competitive ability;393
5.4.3.3;17.3.3 Labour force requirement and supply of labour force;394
5.4.4;17.4 Identification algorithm for model parameters;395
5.4.5;17.5 Identification of model parameters based on real data;397
5.5;18 Probabilistic macrosystem demoeconomic model;406
5.5.1;18.1 Aggregated structure of PMSDEM and its spatiotemporal characteristics;406
5.5.2;18.2 Realization of PMSDEM: the Monte Carlo methods;411
5.5.2.1;18.2.1 Average computing;411
5.5.2.2;18.2.2 Random search;412
5.5.2.3;18.2.3 Generation of random variables with given properties;413
5.5.3;18.3 The POPULATION block;414
5.5.3.1;18.3.1 Classification of population;414
5.5.3.2;18.3.2 Biological reproduction of population (the R module);416
5.5.3.3;18.3.3 Migration (theMmodule);419
5.5.3.4;18.3.4 Dynamics of population (the DP module);425
5.5.3.5;18.3.5 Outputs of the POPULATION block;425
5.5.4;18.4 The economy block;426
5.5.4.1;18.4.1 Production economy (the PE module);426
5.5.4.2;18.4.2 Exchange of products (the Ex module);430
5.5.4.3;18.4.3 Prices (the Pr module);432
5.5.4.4;18.4.4 The output variable of the ECONOMY block;434
5.5.5;18.5 The interaction block;435
5.5.5.1;18.5.1 Migration (the MPP module);435
5.5.5.2;18.5.2 Fertility (the TFR module and the AFRR module);439
5.5.5.3;18.5.3 Mortality (the TMR module and the ASMR module);445
6;Part V Mathematical appendices;453
6.1;A Some theorems of implicit functions;455
6.1.1;A.1 Introduction;455
6.1.2;A.2 Local properties;455
6.1.2.1;A.2.1 Existence and continuity;455
6.1.2.2;A.2.2 Homogeneous forms and posinomials;457
6.1.2.3;A.2.3 Differentiability;461
6.1.3;A.3 Global properties;464
6.1.3.1;A.3.1 Existence;464
6.1.3.2;A.3.2 Differentiability;467
6.2;B Estimating the local Lipschitz Constant of the entropy operator Bv,q;468
6.2.1;B.1 Introduction;468
6.2.2;B.2 Definitions;468
6.2.2.1;B.2.1 The operator Bv,q;468
6.2.2.2;B.2.2 The normal operator B0v,q;469
6.2.2.3;B.2.3 The relation between Bv,q and B0v,q;469
6.2.3;B.3 Properties of the entropy operator B0v,q;471
6.2.3.1;B.3.1 Existence and uniqueness;471
6.2.3.2;B.3.2 Majorant construction;473
6.2.4;B.4 Estimating the norm of derivative of the entropy operator B0v,q;475
6.2.5;B.5 Estimating the spectral norm of the matrix [I0?]-1;478
6.3;C Estimating the local Lipschitz Constant of the entropy operator Fv,q;481
6.3.1;C.1 Definitions;481
6.3.2;C.2 Properties of the normal entropy operator F0v,q;482
6.3.3;C.3 Majorants of the operator F0v,q;484
6.3.4;C.4 Estimate lF;487
6.4;D Zero-order multiplicative algorithms for positive solutions to nonlinear equations;489
6.4.1;D.1 Introduction;489
6.4.2;D.2 Auxiliary estimates;490
6.4.3;D.3 Convergence analysis by continuous analogs of iterative algorithms;493
6.4.4;D.4 Convergence of zero-order multiplicative algorithms withm-active variables: nonlinear equations;494
6.4.5;D.5 Convergence of zero-order multiplicative algorithms withm-active variables: convex programming;496
6.5;E Multiplicative algorithms for positive solutions to entropy-quadratic programming problems;503
6.5.1;E.1 Problem statement;503
6.5.2;E.2 Optimality conditions;504
6.5.3;E.3 Multiplicative algorithm;506
7;Bibliography;507
8;Index;512