Potapenko | Integral Methods in Science and Engineering | E-Book | sack.de
E-Book

E-Book, Englisch, 298 Seiten, eBook

Potapenko Integral Methods in Science and Engineering

Techniques and Applications
1. Auflage 2007
ISBN: 978-0-8176-4671-4
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

Techniques and Applications

E-Book, Englisch, 298 Seiten, eBook

ISBN: 978-0-8176-4671-4
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



This self-contained work illustrates the application of integral methods to diverse problems in mathematics, physics, biology, and engineering. The chapters contain state-of-the-art information on current research in a variety of important practical disciplines. The problems examined arise in real-life processes and phenomena and use a wide range of solution techniques. This is a useful and practical guide.

Potapenko Integral Methods in Science and Engineering jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Superconvergence of Projection Methods for Weakly Singular Integral Operators.- On Acceleration of Spectral Computations for Integral Operators with Weakly Singular Kernels.- Numerical Solution of Integral Equations in Solidification and Melting with Spherical Symmetry.- An Analytic Solution for the Steady-State Two-Dimensional Advection–Diffusion–Deposition Model by the GILTT Approach.- Analytic Two-Dimensional Atmospheric Pollutant Dispersion Simulation by Double GITT.- Transient Acoustic Radiation from a Thin Spherical Elastic Shell.- The Eigenfrequencies and Mode Shapes of Drilling Masts.- Layer Potentials in Dynamic Bending of Thermoelastic Plates.- Direct Methods in the Theory of Thermoelastic Plates.- The Dirichlet Problem for the Plane Deformation of a Thin Plate on an Elastic Foundation.- Some Remarks on Homogenization in Perforated Domains.- Dynamic Response of a Poroelastic Half-Space to Harmonic Line Tractions.- Convexity Conditions and Uniqueness and Regularity of Equilibria in Nonlinear Elasticity.- The Mathematical Modeling of Syringomyelia.- A System Iterative Method for Solving First-Kind, Degraded Identity Operator Equations.- Fast Numerical Integration Method Using Taylor Series.- Boundary Integral Solution of the Two-Dimensional Fractional Diffusion Equation.- About Traces, Extensions, and Co-Normal Derivative Operators on Lipschitz Domains.- On the Extension of Divergence-Free Vector Fields Across Lipschitz Interfaces.- Solutions of the Atmospheric Advection–Diffusion Equation by the Laplace Transformation.- On Quasimodes for Spectral Problems Arising in Vibrating Systems with Concentrated Masses.- Two-Sided Estimates for Local Minimizers in Compressible Elasticity.- Harmonic Oscillations in a Linear Theory of Antiplane Elasticity withMicrostructure.- Exterior Dirichlet and Neumann Problems for the Helmholtz Equation as Limits of Transmission Problems.- Direct Boundary Element Method with Discretization of All Integral Operators.- Reciprocity in Elastomechanics: Development of Explicit Results for Mixed Boundary Value Problems.- Integral Equation Modeling of Electrostatic Interactions in Atomic Force Microscopy.- Integral Representation for the Solution of a Crack Problem Under Stretching Pressure in Plane Asymmetric Elasticity.- Euler–Bernoulli Beam with Energy Dissipation: Spectral Properties and Control.- Correct Equilibrium Shape Equation of Axisymmetric Vesicles.- Properties of Positive Solutions of the Falkner–Skan Equation Arising in Boundary Layer Theory.- Stabilization of a Four-Dimensional System under Real Noise Excitation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.