E-Book, Englisch, 327 Seiten
Reihe: Chapman & Hall/CRC Mathematical & Computational Biology
Pozrikidis Computational Hydrodynamics of Capsules and Biological Cells
1. Auflage 2010
ISBN: 978-1-4398-2006-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 327 Seiten
Reihe: Chapman & Hall/CRC Mathematical & Computational Biology
ISBN: 978-1-4398-2006-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Spanning biological, mathematical, computational, and engineering sciences, computational biofluiddynamics addresses a diverse family of problems involving fluid flow inside and around living organisms, organs, tissue, biological cells, and other biological materials. Computational Hydrodynamics of Capsules and Biological Cells provides a comprehensive, rigorous, and current introduction to the fundamental concepts, mathematical formulation, alternative approaches, and predictions of this evolving field.
In the first several chapters on boundary-element, boundary-integral, and immersed-boundary methods, the book covers the flow-induced deformation of idealized two-dimensional red blood cells in Stokes flow, capsules with spherical unstressed shapes based on direct and variational formulations, and cellular flow in domains with complex geometry. It also presents simulations of microscopic hemodynamics and hemorheology as well as results on the deformation of capsules and cells in dilute and dense suspensions. The book then describes a discrete membrane model where a surface network of viscoelastic links emulates the spectrin network of the cytoskeleton, before presenting a novel two-dimensional model of red and white blood cell motion. The final chapter discusses the numerical simulation of platelet motion near a wall representing injured tissue.
This volume provides a roadmap to the current state of the art in computational cellular mechanics and biofluiddynamics. It also indicates areas for further work on mathematical formulation and numerical implementation and identifies physiological problems that need to be addressed in future research. MATLAB® code and other data are available at http://dehesa.freeshell.org/CC2
Zielgruppe
Bioengineers, mechanical engineers, chemical engineers, physicists, biophysicists, and mathematical biologists.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Algebra
- Naturwissenschaften Biowissenschaften Zellbiologie
- Naturwissenschaften Physik Physik Allgemein
Weitere Infos & Material
Flow-Induced Deformation of Two-Dimensional Biconcave Capsules, C. Pozrikidis
Introduction
Mathematical framework
Numerical method
Cell shapes and dimensionless numbers
Capsule deformation in infinite shear flow
Capsule motion near a wall
Discussion
Flow-Induced Deformation of Artificial Capsules, D. Barthès-Biesel, J. Walter, and A.-V. Salsac
Introduction
Membrane mechanics
Capsule dynamics in flow
B-spline projection
Coupling finite elements and boundary integrals
Capsule deformation in linear shear flow
Discussion
A High-Resolution Fast Boundary-Integral Method for Multiple Interacting Blood Cells, Jonathan B. Freund and Hong Zhao
Introduction
Mathematical framework
Fast summation in boundary-integral computations
Membrane mechanics
Numerical fidelity
Simulations
Summary and outlook
Simulating Microscopic Hemodynamics and Hemorheology with the Immersed-Boundary Lattice-Boltzmann Method, J. Zhang, P. C. Johnson, and A.S. Popel
Introduction
The lattice-Boltzmann method
The immersed-boundary method
Fluid property updating
Models of RBC mechanics and aggregation
Single cells and groups of cells
Cell suspension flow in microvessels
Summary and discussion
Front-Tracking Methods for Capsules, Vesicles, and Blood Cells, Prosenjit Bagchi
Introduction
Numerical method
Capsule deformation in simple shear flow
Capsule interception
Capsule motion near a wall
Suspension flow in a channel
Rolling on an adhesive substrate
Summary
Dissipative Particle Dynamics Modeling of Red Blood Cells, D.A. Fedosov, B. Caswell, and G.E. Karniadakis
Introduction
Mathematical framework
Membrane mechanical properties
Membrane-solvent interfacial conditions
Numerical and physical scaling
Membrane mechanics
Membrane rheology from twisting torque cytometry
Cell deformation in shear flow
Tube flow
Summary
Simulation of Red Blood Cell Motion in Microvessels and Bifurcations, T.W. Secomb
Introduction
Axisymmetric models for single-file RBC motion
Two-dimensional models for RBC motion
Tank-treading in simple shear flow
Channel flow
Motion through diverging bifurcations
Motion of multiple cells
Discussion
Multiscale Modeling of Transport and Receptor-Mediated Adhesion of Platelets in the Bloodstream, N.A. Mody and M.R. King
Introduction
Mathematical framework
Motion of an oblate spheroid near a wall in shear flow
Brownian motion
Shape and wall effects on hydrodynamic collision
Transient aggregation of two platelets near a wall
Conclusions and future directions
Index