Prasad / Chanussot / Li | Advances in Machine Learning and Image Analysis for GeoAI | E-Book | sack.de
E-Book

E-Book, Englisch, 350 Seiten

Prasad / Chanussot / Li Advances in Machine Learning and Image Analysis for GeoAI


1. Auflage 2024
ISBN: 978-0-443-19078-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 350 Seiten

ISBN: 978-0-443-19078-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Advances in Machine Learning and Image Analysis for GeoAI provides state-of-the-art machine learning and signal processing techniques for a comprehensive collection of geospatial sensors and sensing platforms. The book covers supervised, semi-supervised and unsupervised geospatial image analysis, sensor fusion across modalities, image super-resolution, transfer learning across sensors and time-points, and spectral unmixing among other topics. The chapters in these thematic areas cover a variety of algorithmic frameworks such as variants of convolutional neural networks, graph convolutional networks, multi-stream networks, Bayesian networks, generative adversarial networks, transformers and more.Advances in Machine Learning and Image Analysis for GeoAI provides graduate students, researchers and practitioners in the area of signal processing and geospatial image analysis with the latest techniques to implement deep learning strategies in their research. - Covers the latest machine learning and signal processing techniques that can effectively leverage multimodal geospatial imagery at scale - Chapters cover a variety of algorithmic frameworks pertaining to GeoAI, including superresolution, self-supervised learning, data fusion, explainable AI, among others - Presents cutting-edge deep learning architectures optimized for a wide array of geospatial imagery

Prasad / Chanussot / Li Advances in Machine Learning and Image Analysis for GeoAI jetzt bestellen!


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.