Buch, Englisch, 208 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 453 g
Reihe: AI in Clinical Practice
A Primer for Clinicians and Students
Buch, Englisch, 208 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 453 g
Reihe: AI in Clinical Practice
ISBN: 978-1-032-70992-5
Verlag: Taylor & Francis Ltd
Digital technologies are essential to future-proof our health service. With an ageing population and the landscape of the post-pandemic world making increasing demands on an already stretched human workforce, maximizing the potential of a digital future is necessary. This book introduces the concepts and underpinning technology behind recent developments to give a snapshot of the state of the art in the field of digital health and provides information for clinicians of all levels of experience. The reader will gain insight into digital health in general with clinical, technical and industrial insights providing context to the theory.
Key Features:
- Defines the value that artificial intelligence brings to healthcare resulting in improved clinical diagnosis and decision-making.
- Enables not just imaging staff but other healthcare practitioners to extract the best ways of working with AI using the underpinning knowledge from this text.
Zielgruppe
Postgraduate and Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Radiologie, Bildgebende Verfahren
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Nuklearmedizin, PET, Radiotherapie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
1 Introduction and learning objectives 2 Person/patient-centred practice with AI: The Patient, the Practitioner and the use of technology to enable better patient care 3 Background to technology used in healthcare 4 Statistical analyses and reporting of performance of AI models – An introduction to AI statistics 5 Human computer interaction and biases associated with technology use in the context of healthcare 6 Educating clinicians of the future in AI 7 Opportunities and Equity in Imaging AI: Implications for Indigenous and Underrepresented Populations 8 AI in Cardiology 9 AI in Radiology 10 Artificial Intelligence in Onco-Radiology: From Promise to Practice; Industry to implementation 11 The Application of Artificial Intelligence to Histopathology 12 AI in ophthalmology 13 AI in dermatology. AI-enabled diagnostics in dermatology: A case study in skin cancer devices 14 Sustainability in Clinical AI
Case study A Practical implication: how to integrate AI responsibly into life and personal health. The Hear Glue Ear example Case study B AI for Adaptive Learning: A Case Study in Personalising Mammography Education Case study C Integrating Artificial Intelligence into Healthcare: The Patient's Perspective Case study D Transforming radiology workflows at Leiden University Medical Centre (LUMC): a case study in the clinical integration of AI for chest x-ray interpretation