Ramanna / Ciucci / Cornelis | Rough Sets | Buch | 978-3-030-87333-2 | sack.de

Buch, Englisch, 311 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 499 g

Reihe: Lecture Notes in Artificial Intelligence

Ramanna / Ciucci / Cornelis

Rough Sets

International Joint Conference, IJCRS 2021, Bratislava, Slovakia, September 19-24, 2021, Proceedings
1. Auflage 2021
ISBN: 978-3-030-87333-2
Verlag: Springer Nature Switzerland

International Joint Conference, IJCRS 2021, Bratislava, Slovakia, September 19-24, 2021, Proceedings

Buch, Englisch, 311 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 499 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-030-87333-2
Verlag: Springer Nature Switzerland


The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September 2021. The conference was held as a hybrid event due to the COVID-19 pandemic.

The 13 full paper and 7 short papers presented were carefully reviewed and selected from 26 submissions, along with 5 invited papers. The papers are grouped in the following topical sections: core rough set models and methods, related methods and hybridization, and areas of applications.

Ramanna / Ciucci / Cornelis Rough Sets jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Invited Papers.- Mining Incomplete Data Using Global and Saturated Probabilistic Approximations Based on Characteristic Sets and Maximal Consistent Blocks.- Determining Tanimoto Similarity Neighborhoods of Real-Valued Vectors by Means of the Triangle Inequality and Bounds on Length.- Rough-Fuzzy Segmentation of Brain MR Volumes: Applications in Tumor Detection and Malignancy Assessment.- DDAE-GAN: Seismic Data Denoising by Integrating Autoencoder and Generative Adversarial Network.- Classification of Multi-Class Imbalanced Data: Data Difficulty Factors and Selected Methods for Improving Classifiers.- Core Rough Set Models and Methods.- General Rough Modeling of Cluster Analysis.-  Possible Coverings in Incomplete Information Tables with Similarity of Values.- Attribute Reduction Using Functional Dependency Relations in Rough Set Theory.- The RSDS: A Current State and Future Plans.- Many-Valued Dynamic Object-Oriented Inheritance and Approximations.- Related Methods and Hybridization.- Minimizing Depth of Decision Trees with Hypotheses.- The Influence of Fuzzy Expectations on Triples of Triangular Norms in the Weighted Fuzzy Petri Net for the Subject Area of Passenger Transport Logistics.- Possibility Distributions Generated by Intuitionistic L-Fuzzy Sets.- Feature Selection and Disambiguation in Learning from Fuzzy Labels using Rough Sets.- Right Adjoint Algebras versus Operator Left Residuated posets.- Adapting Fuzzy Rough Sets for Classification with Missing Values.- Areas of Applications.- Spark Accelerated Implementation of Parallel Attribute Reduction from Incomplete Data.- Attention Enhanced Hierarchical Feature Representation for Three-way Decision Boundary Processing.- An Opinion Summarization-Evaluation System Based on Pre-trained Models.- Fuzzy-Rough Nearest Neighbour Approaches for Emotion Detection in Tweets.- Three-way decisions based RNN models for sentiment classification.- Tolerance-Based Short Text Sentiment Classifier.- Knowledge Graph Representation Learning for Link Prediction with Three-Way Decisions.- PNeS in Modelling, Control and Analysis of Concurrent Systems.- 3RD: A Multi-Criteria Decision-Making Method Based on Three-Way Rankings.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.