Rees | Foundations of Statistics | Buch | 978-0-412-28560-8 | www.sack.de

Buch, Englisch, 560 Seiten, Format (B × H): 156 mm x 235 mm, Gewicht: 780 g

Rees

Foundations of Statistics


1. Auflage 1987
ISBN: 978-0-412-28560-8
Verlag: Chapman and Hall/CRC

Buch, Englisch, 560 Seiten, Format (B × H): 156 mm x 235 mm, Gewicht: 780 g

ISBN: 978-0-412-28560-8
Verlag: Chapman and Hall/CRC


This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.

Rees Foundations of Statistics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1 Diagrams and tables -- 1.1 Introduction -- 1.2 Data and an example of a data set -- 1.3 Tables and diagrams for continuous variables -- 1.4 Tables and diagrams for discrete variables -- 1.5 Tables and diagrams for categorical variables -- 1.6 Summary -- Worksheet 1 -- 2 Measures of location -- 2.1 Introduction -- 2.2 Mean of ungrouped data -- 2.3 Mean of grouped data -- 2.4 Median of ungrouped data -- 2.5 Median of grouped data -- 2.6 Mode of ungrouped data -- 2.7 Mode of grouped data -- 2.8 When to use the mean, median and mode -- 2.9 Geometric mean, weighted mean and index numbers -- 2.10 Summary -- Worksheet 2 -- 3 Measures of dispersion and skewness -- 3.1 Introduction -- 3.2 Standard deviation and variance of ungrouped data -- 3.3 Standard deviation and variance of grouped data -- 3.4 Inter-quartile range, percentiles and deciles of grouped data -- 3.5 Which measure of dispersion to use? -- 3.6 Range -- 3.7 Measures of skewness -- 3.8 Summary Appendix to Chapter 3 -- Worksheet 3 -- 4 Basic ideas of probability -- 4.1 Introduction -- 4.2 Some terminology -- 4.3 The definition of probability for the case of equally likely outcomes -- 4.4 The relative frequency definition of probability -- 4.5 Probability, proportion, percentage and odds -- 4.6 Probabilities of the intersection of events; the multiplication law -- 4.7 Probabilities of the union of events; the addition law -- 4.8 Complementary events, a mutually exclusive and exhaustive -- set of events, and the probability of ‘at least one’ -- 4.9 Using both laws of probability, tree diagrams -- 4.10 Permutations and combinations -- 4.11 The law of total probability and Bayes’ formula -- 4.12 Summary -- Worksheet 4 -- 5 Random variables and their probability distributions -- 5.1 Introduction -- 5.2 Discrete random variables, probability function -- 5.3 Expectation, mean and variance of a discrete random variable -- 5.4 Probability generating function for a discrete random variable -- 5.5 Continuous random variables, probability density function -- 5.6 Expectation, mean and variance of a continuous random variable -- 5.7 Distribution function for a continuous random variable -- 5.8 Median of a continuous random variable -- 5.9 Moment generating function for a continuous random variable -- 5.10 Mean and variance of a linear function of a random variable -- 5.11 The probability distribution for a function of a continuous random variable -- 5.12 Summary -- Appendix to Chapter 5 -- Worksheet 5 -- 6 Some standard discrete and continuous probability distributions -- 6.1 Introduction -- 6.2 Binomial distribution -- 6.3 Poisson distribution -- 6.4 Geometric distribution -- 6.5 Rectangular (uniform) distribution -- 6.6 Normal distribution -- 6.7 Exponential distribution -- 6.8 Summary Worksheet 6 -- 7 Approximations to the binomial and Poisson distributions -- 7.1 Introduction -- 7.2 Poisson approximation to the binomial distribution -- 7.3 Normal approximation to the binomial distribution -- 7.4 Normal approximation to the Poisson distribution -- 7.5 Summary -- Worksheet 7 -- 8 Linear functions of random variables, and joint distributions -- 8.1 Introduction -- 8.2 The mean and variance of aX + bY -- 8.3 The distribution of a linear function of independent normally distributed variables -- 8.4 The distribution of the sum of independent Poisson variables -- 8.5 The distribution of the sum of independent and identically distributed geometric variables -- 8.6 Joint, conditional and marginal distributions -- 8.7 Summary -- Worksheet 8 -- 9 Samples, populations and point estimation -- 9.1 Introduction -- 9.2 Samples and populations -- 9.3 Random sampling -- 9.4 Properties of point estimators -- 9.5 Sampling distribution of the sample mean -- 9.6 Point estimation of the mean of a normal distribution -- 9.7 Point estimation of the variance of a normal distribution -- 9.8 Point estimation of the binomial parameter, p -- 9.9 Point estimation of the common variance of two normal distributions, data from two samples -- 9.10 Point estimation of the binomial parameter, p, data from two binomial experiments -- 9.11 Summary -- Worksheet 9 -- 10 Interval estimation -- 10.1 Introduction -- 10.2 Confidence interval for the mean of a normal distribution with known variance -- 10.3 The t distribution and degrees of freedom -- 10.4 Confidence interval for the mean of a normal distribution with unknown variance -- 10.5 The sample size required to estimate the mean of a normal distribution -- 10.6 Confidence interval for the difference between the means of two normal distributions (unpaired samples data) -- 10.7 Confidence interval for the mean of a normal distribution of differences (paired samples data) -- 10.8 The x2 distribution -- 10.9 Confidence interval for the variance of a normal distribution -- 10.10 Confidence interval for a binomial parameter, p -- 10.11 The sample size required to estimate a binomial parameter, p -- 10.12 Confidence interval for the difference between two binomial parameters -- 10.13 Confidence intervals based on the central limit theorem -- 10.14 Summary -- Worksheet 10 -- 11 Hypothesis tests for the mean and variance of normal distributions -- 11.1 Introduction -- 11.2 The null and alternative hypotheses -- 11.3 Hypothesis test for the mean of a normal distribution with known variance -- 11.4 Hypothesis test for the mean of a normal distribution with unknown variance -- 11.5 Hypothesis test for the difference between the means of two normal distributions (unpaired samples data) -- 11.6 Hypothesis test for the mean of a normal distribution of differences (paired samples data) -- 11.7 Hypothesis test for the variance of a normal distribution -- 11.8 Hypothesis test for the equality of the variances of two normal distributions -- 11.9 How a confidence interval can be used to test hypotheses -- 11.10 Type I and II errors, and the power of a test -- 11.11 Note on assumptions made in hypothesis tests -- 11.12 Summary -- Worksheet 11 -- 12 Hypothesis tests for the binomial parameter, p -- 12.1 Introduction -- 12.2 An exact test for a binomial parameter -- 12.3 An approximate test for a binomial parameter -- 12.4 An approximate test for the difference between two binomial parameters -- 12.5 Summary -- Worksheet 12 -- 13 Hypothesis tests for independence and goodness-of-fit -- 13.1 Introduction -- 13.2 x2 test for independence, contingency table data -- 13.3 2x2 contingency table, x2 test -- 13.4 x2 goodness-of-fit test for a simple proportion distribution -- 13.5 x2 goodness-of-fit test for a binomial distribution -- 13.6 x2 goodness-of-fit test for a Poisson distribution -- 13.7 Graphical method of testing for a Poisson distribution 13 8 x2 goodness-of-fit test for a normal distribution -- 13.9 Graphical methods of testing for a normal distribution -- 13.10 Summary -- Worksheet 13 -- 14 Non-parametric hypothesis tests -- 14.1 Introduction -- 14.2 Sign test -- 14.3 Wilcoxon signed rank test -- 14.4 Mann-Whitney U test -- 14.5 Summary Worksheet 14 -- 15 Correlation -- 15.1 Introduction -- 15.2 The correlation coefficient between two variables -- 15.3 Calculation and interpretation of Pearson’s correlation coefficient, r -- 15.4 The coding method of calculating Pearson’s r -- 15.5 Hypothesis test for non-zero values of p (Fisher’s transformation) -- 15.6 Confidence interval for p -- 15.7 Hypothesis test for the difference between two correlation coefficients, p i and p2 -- 15.8 Spearman’s coefficient of rank correlation, rs -- 15.9 Kendall’s tau (x) -- 15.10 Correlation coefficients between linear functions of two variables -- 15.11 Summary -- Appendix to Chapter 15 -- Worksheet 15 -- Regression -- 16.1 Introduction -- 16.2 Method of least squares -- 16.3 The equation of the regression line of Y on X: an example -- 16.4 A linear statistical model for regression -- 16.5 Inferences about the slope, /?, of the regression line, a2 known -- 16.6 Inferences about /?, g2 unknown -- 16.7 Inferences about a -- 16.8 Inferences about predicted mean values of Y -- 16.9 Inferences about the difference between two predicted mean values of Y -- 16.10 Regression when both variables are random -- 16.11 Transformations to produce linearity -- 16.12 Summary -- Worksheet 16 -- Elements of experimental design and analysis -- 17.1 Introduction -- 17.2 A completely randomized design with two treatments: an example -- 17.3 Analysis of variance for a completely randomized design with two treatments -- 17.4 One-way analysis of variance for a completely randomized design with more than two treatments -- 17.5 Further analysis following the analysis of variance for a completely randomized design -- 17.6 Two-way analysis of variance for a randomized block design -- 17.7 Further analysis following the analysis of variance for a randomized block design -- 17.8 Summary -- Appendix to Chapter 17 -- Worksheet 17 -- 18 Quality control charts and acceptance sampling -- 18.1 Introduction -- 18.2 Control charts for the mean and range of a continuous variable -- 18.3 Control charts for fraction defective -- 18.4 Acceptance sampling, a single sampling plan -- 18.5 Acceptance sampling, a double sampling plan -- 18.6 Single versus double sampling plans -- 18.7 Summary Worksheet 18 -- Information on projects in statistics at A-level -- Appendix A Answers to worksheets -- Appendix B Glossary of notation -- Appendix C Statistical tables -- Index.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.