Rekik / Park / Adeli | Predictive Intelligence in Medicine | Buch | 978-3-030-32280-9 | sack.de

Buch, Englisch, Band 11843, 178 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g

Reihe: Lecture Notes in Computer Science

Rekik / Park / Adeli

Predictive Intelligence in Medicine

Second International Workshop, PRIME 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings
1. Auflage 2019
ISBN: 978-3-030-32280-9
Verlag: Springer Nature Switzerland

Second International Workshop, PRIME 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings

Buch, Englisch, Band 11843, 178 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-32280-9
Verlag: Springer Nature Switzerland


This book constitutes the proceedings of the Second International Workshop on Predictive Intelligence in Medicine, PRIME 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. 
The 18 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.
Rekik / Park / Adeli Predictive Intelligence in Medicine jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


TADPOLE Challenge: Accurate Alzheimer's disease prediction through crowdsourced forecasting of future data.- Inter-fractional Respiratory Motion Modelling from Abdominal Ultrasound: A Feasibility Study.- Adaptive Neuro-Fuzzy Inference System-based Chaotic Swarm Intelligence Hybrid Model for Recognition of Mild Cognitive Impairment from Resting-state fMRI.- Deep Learning via Fused Bidirectional Attention Stacked Long Short-term Memory for Obsessive-Compulsive Disorder Diagnosis and Risk Screening.- Modeling Disease Progression In Retinal OCTs With Longitudinal Self-Supervised Learning.- Predicting Response to the Antidepressant Bupropion using Pretreatment fMRI.- Progressive Infant Brain Connectivity Evolution Prediction from Neonatal MRI using Bidirectionally Supervised Sample Selection.- Computed Tomography Image-Based Deep Survival Regression for Metastatic Colorectal Cancer using a Non-Proportional Hazards Model.- 7 years of Developing Seed Techniques for Alzheimer's Disease Diagnosis using Brain Image and Connectivity Data Largely Bypassed Prediction for Prognosis.- Generative Adversarial Irregularity Detection in Mammography Images.- Hierarchical Adversarial Connectomic Domain Alignment for Target Brain Graph Prediction and Classification From a Source Graph.- Predicting High-Resolution Brain Networks Using Hierarchically Embedded and Aligned Multi-Resolution Neighborhoods.- Catheter Synthesis in X-Ray Fluoroscopy with Generative Adversarial Networks.- Prediction of Clinical Scores for Subjective Cognitive Decline and Mild Cognitive Impairment.- Diagnosis of Parkinsons Disease in Genetic Cohort Patients via Stage-wise Hierarchical Deep Polynomial Ensemble learning.- Automatic Detection of Bowel Disease with Residual Networks.- Support Vector based Autoregressive Mixed Models of Longitudinal Brain Changes and Corresponding Genetics in Alzheimers Disease.- Treatment Response Prediction of Hepatocellular Carcinoma Patients from Abdominal CT Images with Deep Convolutional Neural Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.