Ribeiro / Mosleh / Meixedo | Artificial Intelligence Methods in Railway Infrastructure Systems | Buch | 978-0-443-33779-6 | sack.de

Buch, Englisch, 500 Seiten, Format (B × H): 152 mm x 229 mm

Ribeiro / Mosleh / Meixedo

Artificial Intelligence Methods in Railway Infrastructure Systems

Application of Data Centric Engineering
Erscheinungsjahr 2026
ISBN: 978-0-443-33779-6
Verlag: Elsevier Science

Application of Data Centric Engineering

Buch, Englisch, 500 Seiten, Format (B × H): 152 mm x 229 mm

ISBN: 978-0-443-33779-6
Verlag: Elsevier Science


With the rapid recent advances in the field of railway systems and infrastructure construction, and the evolution of AI tools that have enormous potential for application to railway design, maintenance and operations, industry professionals and researchers need an up-to-date resource on these developments. Artificial Intelligence Methods in Railway Infrastructure Systems: Application of Data Centric Engineering addresses this need. The book encapsulates the latest breakthroughs and contributions in these pivotal areas, providing readers with comprehensive insights into the cutting-edge methodologies and approaches shaping the field of railway infrastructure management. For engineers and researchers, the book provides a focused explanation of AI methodologies such as machine learning, computer vision and predictive analytics and their implementation to railway infrastructure development, tools that are new to this field. It combines theory with practical examples of the application of data centric engineering in structural health monitoring of monitoring of railway systems, thus enabling early anomaly detection and empowering infrastructure managers to address potential issues before they escalate. Given the expansive scope of research driving technological advancements in railway infrastructure management, this book serves as a reference for readers seeking to explore novel AI-based methodologies and harness their potential in the field. Readers will benefit from insights into how AI innovations can streamline their operations and enhance network safety across multiple dimensions. By providing a comprehensive overview of the subject matter, this book guides anticipatory strategies and shape future trends in railway infrastructure management.

Ribeiro / Mosleh / Meixedo Artificial Intelligence Methods in Railway Infrastructure Systems jetzt bestellen!

Weitere Infos & Material


1. AI Methods in Railway Infrastructure Systems
2. An intelligent bridge condition monitoring system
3. An intelligent track condition monitoring system via wayside strategies
4. Smart wayside solutions for railway vehicle damage identification and unbalanced loads
5. Drive by methodologies for smart condition monitoring of railway tracks
6. Drive by methodologies for smart condition monitoring of railway bridges
7. Drive by methodologies for smart condition monitoring of rolling stock
8. Integrating artificial intelligence into railway digital twin frameworks
9. AI-based approach for wheel defect detection and severity classification using track-side monitoring
10. AI-driven strategies for predictive maintenance in climates changing
11. The role of machine learning in automated inspection of railway bridges
12. Machine learning algorithms for enhanced remote assessment of railway tunnels
13. Challenges and innovations: successful implementation of AI in railway noise and vibration control
14. AI-enhanced forecasting of traffic-induced dynamic loads on railways
15. AI applications for dynamic train network management
16. Smart sensors and AI: enhancing performance in railway transition areas
17. From insight to action: implementing AI-based strategies for railway switches and crossings
18. AI-based pantograph-catenary monitoring system for railway operation
19. IoT-based monitoring of railway infrastructures with artificial intelligence
20. Structural condition monitoring of retrofitted railway bridges using machine learning
21. AI applications in rail transport and navigating the tracks
22. Prediction of track geometry degradation using artificial intelligence
23. The role of AI in shaping the future of railway systems
24. AI ethical, juridical and trustworthiness issues


Gordan, Meisam
Dr Meisam Gordan is currently a Postdoctoral Research Fellow at University College Dublin, working on the Di-Rail project, which focuses on automated and rapid fault diagnosis of railway tracks using in-service train measurements. His research interests include: structural health monitoring, data mining, critical infrastructure resilience, Industry 4.0, big data and smart cities

Ghiasi, Ramin
Dr Ramin Ghiasi is a Postdoctoral Research Fellow at the School of Civil Engineering, University College Dublin, Ireland. His research interests encompass civil structure and infrastructure health monitoring (including transport infrastructure, offshore wind turbines, and tall buildings), the application of AI and optimization methods in civil engineering, and the creation of IoT-based monitoring systems

Malekjafarian, Abdollah
Dr Abdollah Malekjafarian is an Assistant Professor in the School of Civil Engineering, University College Dublin, Ireland. His main areas of research interest are structural dynamics and random vibrations for civil infrastructure including "transport Infrastructure" and "offshore wind turbines"

Ribeiro, Diogo
Dr Ribeiro is Professor at Instituto Superior de Engenharia do Porto in Portugal. He is a Member of the Institute of R&D in Structures and Construction (CONSTRUCT), coordinator or researcher on more than 20 R&D projects funded by industry, FCT and EU programs in the field of railway infrastructures and digital construction

Meixedo, Andreia
Andreia Meixedo holds a Master in Structural Engineering (2012) and a PhD in Civil Engineering (2021), all from the University of Porto. Her main research experience is related to damage identification, structural health monitoring, machine learning, railway infrastructures, wayside and onboard condition monitoring; weigh-in-motion; advanced models for analysis of the bridge-track-train dynamic interaction, structural testing and experimentation, model calibration and validation

Mosleh, Araliya
Araliya Mosleh is a senior researcher at the Faculty of Civil Engineering, University of Porto. She obtained her PhD degree in 2016 from the University of Aveiro, Portugal. Since then she has actively engaged in 9 national and international projects in the field of railway infrastructure. She was a visiting researcher at Bundeswehr University (2015), Wollongong University (2017), and Evoleo Company (2019)



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.