Ribeiro / Mosleh / Meixedo | Artificial Intelligence Methods in Railway Infrastructure Systems | Buch | 978-0-443-33779-6 | www.sack.de

Buch, Englisch, 500 Seiten, Format (B × H): 152 mm x 229 mm

Ribeiro / Mosleh / Meixedo

Artificial Intelligence Methods in Railway Infrastructure Systems

Application of Data Centric Engineering
Erscheinungsjahr 2026
ISBN: 978-0-443-33779-6
Verlag: Elsevier Science

Application of Data Centric Engineering

Buch, Englisch, 500 Seiten, Format (B × H): 152 mm x 229 mm

ISBN: 978-0-443-33779-6
Verlag: Elsevier Science


Artificial Intelligence Methods in Railway Infrastructure Systems: Application of Data Centric Engineering offers a thorough exploration of the latest advancements transforming railway management. With a strong focus on practical and theoretical approaches, this book introduces innovative AI techniques including machine learning, computer vision, and predictive analytics. These methodologies are presented in the context of railway infrastructure, empowering engineers and researchers to utilize cutting-edge technology for enhanced system reliability. By bridging the gap between theory and real-world applications, the book enables early detection of anomalies, supporting proactive maintenance strategies and improved operational efficiency in railway networks.

This book acts as a vital reference for those seeking to understand and implement AI-driven solutions in railway systems, encouraging the adoption of anticipatory strategies to shape future trends. Readers will discover how AI innovations can streamline operations, optimize resource allocation, and significantly improve network safety, making it an essential guide for professionals looking to stay ahead in the evolving field of railway infrastructure management.

Ribeiro / Mosleh / Meixedo Artificial Intelligence Methods in Railway Infrastructure Systems jetzt bestellen!

Weitere Infos & Material


1. AI Methods in Railway Infrastructure Systems
2. An intelligent bridge condition monitoring system
3. An intelligent track condition monitoring system via wayside strategies
4. Smart wayside solutions for railway vehicle damage identification and unbalanced loads
5. Drive by methodologies for smart condition monitoring of railway tracks
6. Drive by methodologies for smart condition monitoring of railway bridges
7. Drive by methodologies for smart condition monitoring of rolling stock
8. Integrating artificial intelligence into railway digital twin frameworks
9. AI-based approach for wheel defect detection and severity classification using track-side monitoring
10. AI-driven strategies for predictive maintenance in climates changing
11. The role of machine learning in automated inspection of railway bridges
12. Machine learning algorithms for enhanced remote assessment of railway tunnels
13. Challenges and innovations: successful implementation of AI in railway noise and vibration control
14. AI-enhanced forecasting of traffic-induced dynamic loads on railways
15. AI applications for dynamic train network management
16. Smart sensors and AI: enhancing performance in railway transition areas
17. From insight to action: implementing AI-based strategies for railway switches and crossings
18. AI-based pantograph-catenary monitoring system for railway operation
19. IoT-based monitoring of railway infrastructures with artificial intelligence
20. Structural condition monitoring of retrofitted railway bridges using machine learning
21. AI applications in rail transport and navigating the tracks
22. Prediction of track geometry degradation using artificial intelligence
23. The role of AI in shaping the future of railway systems
24. AI ethical, juridical and trustworthiness issues


Gordan, Meisam
Dr Meisam Gordan is currently a Postdoctoral Research Fellow at University College Dublin, working on the Di-Rail project, which focuses on automated and rapid fault diagnosis of railway tracks using in-service train measurements. His research interests include: structural health monitoring, data mining, critical infrastructure resilience, Industry 4.0, big data and smart cities

Ribeiro, Diogo
Dr Ribeiro is Professor at Instituto Superior de Engenharia do Porto in Portugal. He is a Member of the Institute of R&D in Structures and Construction (CONSTRUCT), coordinator or researcher on more than 20 R&D projects funded by industry, FCT and EU programs in the field of railway infrastructures and digital construction

Mosleh, Araliya
Araliya Mosleh is a senior researcher at the Faculty of Civil Engineering, University of Porto. She obtained her PhD degree in 2016 from the University of Aveiro, Portugal. Since then she has actively engaged in 9 national and international projects in the field of railway infrastructure. She was a visiting researcher at Bundeswehr University (2015), Wollongong University (2017), and Evoleo Company (2019)

Ghiasi, Ramin
Dr Ramin Ghiasi is a Postdoctoral Research Fellow at the School of Civil Engineering, University College Dublin, Ireland. His research interests encompass civil structure and infrastructure health monitoring (including transport infrastructure, offshore wind turbines, and tall buildings), the application of AI and optimization methods in civil engineering, and the creation of IoT-based monitoring systems

Meixedo, Andreia
Andreia Meixedo holds a Master in Structural Engineering (2012) and a PhD in Civil Engineering (2021), all from the University of Porto. Her main research experience is related to damage identification, structural health monitoring, machine learning, railway infrastructures, wayside and onboard condition monitoring; weigh-in-motion; advanced models for analysis of the bridge-track-train dynamic interaction, structural testing and experimentation, model calibration and validation



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.