Rogner / Igarashi / Asada | Biohydrogen III | E-Book | sack.de
E-Book

E-Book, Englisch, 196 Seiten, Web PDF

Rogner / Igarashi / Asada Biohydrogen III

Renewable Energy System by Biological Solar Energy Conversion
1. Auflage 2004
ISBN: 978-0-08-047211-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Renewable Energy System by Biological Solar Energy Conversion

E-Book, Englisch, 196 Seiten, Web PDF

ISBN: 978-0-08-047211-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Hydrogen is an almost ideal fuel and its wider use will result in an improvement in the environment due to factors including decreased air pollution. Hydrogen is the element of greatest abundance in the universe; however, its production from renewable resources remains a major challenge. The papers presented within this volume enhance and expand upon presentations made at the 'Workshop on Biohydrogen 2002'. The contents evaluate the current status of Biohydrogen research worldwide and consider future research directions.
* Important research on new fuel opportunities
* 15 contributions from the world's leading experts

Rogner / Igarashi / Asada Biohydrogen III jetzt bestellen!

Weitere Infos & Material


1;Cover;1
2;Elsevier Internet Homepage;2
3;Related Journals;2
4;To Contact the Publisher;2
5;Preface;5
6;Contents;7
7;Hydrogen Production;9
7.1;New Frontiers of Hydrogen Energy Systems;11
7.1.1;Abstract;11
7.1.2;Introduction;11
7.1.3;Water-Splitting Systems by Renewable Energy;12
7.1.4;Sonalysis and the Bubble Fusion;14
7.1.5;Hydrogen Storage Systems;16
7.1.6;Hydrogen Utilization Systems;17
7.1.7;Summary;19
7.1.8;References;19
7.2;Novel Approaches to Exploit Microbial Hydrogen Metabolism;21
7.2.1;Abstract;21
7.2.2;Hydrogenases;22
7.2.2.1;Hydrogenase Structure;22
7.2.2.2;Assembly of NiFe Hydrogenases;24
7.2.2.3;Photosynthetic Bacteria;24
7.2.2.4;Why Thiocapsa Roseopersicina BBS?;24
7.2.2.5;Stable Hydrogenase (HydSL/HynSL);26
7.2.2.6;Unstable Hydrogenase (HupSL);26
7.2.2.7;Soluble Hydrogenase (HoxYH);26
7.2.2.8;Sensor Hydrogenase (HupUV);26
7.2.2.9;Accessory Genes Participating in the Assembly of NiFe Hydrogenases in T. Roseopersicina;27
7.2.3;Inventory of the Identified Accessory Genes;29
7.2.3.1;hypC;29
7.2.3.2;hypD;29
7.2.3.3;hypE;29
7.2.3.4;hypF;29
7.2.3.5;hupK;30
7.2.3.6;hydD/hynD;30
7.2.4;Heterologous Complementation Studies;30
7.2.5;Construction of Deletion Mutants;31
7.2.6;Methanotrophic Hydrogenases;31
7.2.6.1;Hydrogen Production by Whole Cells;32
7.2.6.2;Multiple Hydrogenases;32
7.2.6.3;Membrane-Bound Hydrogenase;33
7.2.6.4;Soluble Hydrogenase;33
7.2.6.5;Hydrogen-driven MMO Activities;33
7.2.6.6;Utilisation of Hydrogen Metabolism in Biotechnological Applications;34
7.2.6.7;Biogas;34
7.2.7;Acknowledgements;37
7.2.8;References;38
7.3;Application of Hydrogenase for Renewable Energy Model Systems;41
7.3.1;Introduction;41
7.3.2;Photoproduction of Hydrogen by Inorganic Semiconductor TiO2- Hydrogenase Model System;41
7.3.3;Photoproduction of Hydrogen by Inorganic Semiconductor Cds - Hydrogenase Model System;43
7.3.4;Production and Oxidation of Hydrogen by Hydrogenase with Metal as Electron Donor/Acceptor;44
7.3.5;Hydrogen Enzyme Electrode for Renewable Energy;45
7.3.6;Hydrogenase in Energy Saving and Environmental Protecting Systems;46
7.3.7;Conclusion;47
7.3.8;References;48
8;Photosynthesis and Photobioreactor;51
8.1;Photo-Biological Hydrogen Production by the Uptakehydrogenase and PHB Synthase Deficient Mutant of Rhodobacter Sphaeroides;53
8.1.1;Abstract;53
8.1.2;Introduction;54
8.1.3;Materials and Methods;54
8.1.3.1;Microorganisms;54
8.1.3.2;Cultivation;54
8.1.3.3;Analysis;55
8.1.4;Results & Discussion;55
8.1.4.1;Growth and Hydrogen Production;55
8.1.4.2;Carbon Sources;57
8.1.4.3;Initial pH and Agitation;60
8.1.4.4;Light Intensity;60
8.1.5;Summary;61
8.1.6;References;62
8.2;Hydrogen Production by Suspension and Immobilized Cultures of Phototrophic Microorganisms. Technological Aspects;65
8.2.1;Abstract;65
8.2.2;Introduction;65
8.2.3;Definitions and Units;66
8.2.4;Suspension Cultures;67
8.2.4.1;Cultivation Regime;67
8.2.4.2;Photobioreactors;69
8.2.5;Possibilities of Technological Methods in Solution of Problems Raised in Biohydrogen Photoproduction Research;70
8.2.5.1;Low Efficiency of Light Energy Bioconversion;70
8.2.5.2;Sensitivity of Key Enzymes (Nitrogenase and Hydrogenase) to Oxygen;70
8.2.5.3;Low Saturating Light Intensity Comparing with Sun Light;70
8.2.5.4;Low Specific Rates of Hydrogen Photoproduction;71
8.2.6;Immobilized Cultures;72
8.2.6.1;Methods and Matrixes for Immobilization of Photosynthetic Microorganisms;72
8.2.6.2;Hydrogen Production by Immobilized Cultures;73
8.2.7;Acknowledgements;76
8.2.8;References;76
9;Hydrogenase;81
9.1;The Potential of Using Cyanobacteria as Producers of Molecular Hydrogen;83
9.1.1;Introduction;83
9.1.2;Cyanobacterial Hydrogenases;83
9.1.3;Accessory Genes & Gene Products;86
9.1.4;Diversity of Cyanobacterial Hydrogenases;86
9.1.5;Cyanobacterial Biohydrogen;86
9.1.6;Future R&D and International Cooperations/Networks;88
9.1.7;Acknowledgement;89
9.1.8;Referenes;89
9.2;Photobiological Hydrogen Production by Cyanobacteria Utilizing Nitrogenase Systems -Present Status and Future Development-;91
9.2.1;Abstract;91
9.2.2;Introduction;91
9.2.2.1;Our Needs for Exploitation of Renewable Energies;91
9.2.3;Photobiological Hydrogen Production Utrilizing Cyanobacteria;93
9.2.3.1;Merits of Photobiological Hydrogen Production Utilizing Cyanobacteria;93
9.2.3.2;Enzymes of Cyanobacteria Involved in Hydrogen Metabolism;94
9.2.3.3;Choice of Nitrogenase-based Hydrogen Production;95
9.2.3.4;Construction of Hydrogenase Mutants and Effects of Deletion of Hydrogenases on Hydrogen Production;95
9.2.3.5;Possible Means of Improving Hydrogen Production Activity;96
9.2.4;Concluding Remarks;98
9.2.5;References;99
9.3;Fundamentals and Limiting Processes of Biological Hydrogen Production;101
9.3.1;Abstract;101
9.3.2;Introduction;101
9.3.3;Hydrogen Evolving Enzymes;102
9.3.4;Light-Dependant Processes;102
9.3.4.1;General Considerations;102
9.3.4.2;Direct Biophotolysis;104
9.3.4.3;Indirect Biophotolysis;105
9.3.4.4;Photofermentations;105
9.3.5;Dark Fermentations;106
9.3.6;Acknowledgement;107
9.3.7;References;107
10;Bio Molecular Device;109
10.1;The Isolation of Green Algal Strains with Outstanding H2-Productivity;111
10.1.1;Abstract;111
10.1.2;Introduction;111
10.1.3;Materials and Methods;112
10.1.3.1;Algae Strains and Growth Condition;112
10.1.3.2;Cell Count and Chlorophyll Determination;113
10.1.3.3;Isolation of the hydA Gene by PCR Methods;113
10.1.3.4;Isolation and Analysis of RNA;113
10.1.3.5;Nuclear Transformation of C. Reinhardtii;114
10.1.3.6;Hydrogen Evolution Assay in Deep Well Plates;114
10.1.4;Results;114
10.1.4.1;Isolation and Characterization of the [Fe]-Hydrogenase Gene from C. Moewusii;114
10.1.4.2;Structural Characteristics of HydA from C. Moewusii;116
10.1.4.3;Molecular Phylogenetic Analyses;117
10.1.4.4;Generation of a Mutant Library and Screening of the Transformants;118
10.1.5;Discussion;121
10.1.6;Acknowledgements;122
10.1.7;References;122
10.2;Identification of a Cis-Acting Element controlling Anaerobic Expression of the HYDA Gene from Chlamydomonas Reinhardtii;125
10.2.1;Abstract;125
10.2.2;Keywords;125
10.2.3;Introduction;125
10.2.4;Materials and Methods;126
10.2.4.1;Strains, Culture Conditions and Anaerobic Adaptation;126
10.2.4.2;Hydrogen Evolution Assay;127
10.2.4.3;Genome Walking with Genomic DNA;127
10.2.4.4;Construction of Chimeric Constructs;127
10.2.4.5;Nuclear Transformation of C. Reinhardtii;127
10.2.4.6;Assays of Arylsulphatase Activity;127
10.2.4.7;Isolation of Nucleic Acids and Genetic Analyses;128
10.2.5;Results;128
10.2.5.1;Nucleotide Sequence of the hydA Promoter Region;128
10.2.5.2;PCR and Southern Blot Analysis of Transformants;130
10.2.5.3;Qualitative and Quantitative Arylsulphatase Assay of Transformants;130
10.2.5.4;Northern Analysis of Transformants under Anaerobic Conditions;132
10.2.5.5;A 108 bp Region between -128 and-21 Conferring Anaerobic Expression of the hydA Gene;132
10.2.6;Discussion;133
10.2.7;Refereces;134
10.3;Glycolipid Liquid Crystals as Novel Matrices for Membrane Protein Manipulations;137
10.3.1;Abstract;137
10.3.2;Introduction;137
10.3.3;Results;139
10.3.3.1;Physical Properties of MalN(Phyt)2/Water Systems -Phase Behavior and Characterstics of the Bilayer Membranes-;139
10.3.3.2;Functional Reconstitution of Thermophilic Cyanobacterial Photosystem II Complex (PS II). Incorporation of PS II into Vesicles;141
10.3.3.3;Oxygen Evolution Activity of Reconstituted PS II;141
10.3.3.4;Incorporated Amount of PS II and Freeze-Fracture Electron Microscopy Images of PS II Reconstituted Vesicles;143
10.3.3.5;Lipid Effects on the O2-Evolution Activity of the Reconstituted PS II;143
10.3.4;Discussion;145
10.3.4.1;Membrane Lipid Composition -Hydrophobic Matching and Interfacial Charges-;145
10.3.4.2;Why the Salt-Induced Aggregation of the Non-Ionic Mal3(Phyt)2 Vesicles Occurrs ?;145
10.3.4.3;Possible Protective Effects of Glycolipids against Destabilization of PS II;146
10.3.5;Concluding Remarks;146
10.3.6;Acknowledgments;147
10.3.7;References;147
10.3.8;Molecular Requirements;149
10.4;Artificial Phytanyl-Chained Glycolipid Vesicle Membranes with Low Proton Permeability are Suitable for Proton Pump Reconstitution Matrices;151
10.4.1;Abstract;151
10.4.2;Introduction;151
10.4.3;Materials and Methods;152
10.4.3.1;Materials;152
10.4.3.2;Incorporation of BR into Vesicle Membranes;152
10.4.3.3;Assay of Proton Pumping Activity of BR;153
10.4.3.4;Freeze-Fracture Electron Microscopy (FFEM);153
10.4.4;Results;153
10.4.4.1;FFEM Observations of BR-Reconstituted Vesicle Membranes;153
10.4.4.2;Functioning of BR-Reconstituted Vesicle Membranes;154
10.4.5;Discussion;154
10.4.6;Acknowledgments;156
10.4.7;References;157
10.5;Amphipols: Strategies for an Improved PS2 Environment in Detergent-Free Aqueous Solution;159
10.5.1;Abstract;159
10.5.2;Keywords;159
10.5.3;Introduction;159
10.5.4;Materials & Methods;161
10.5.4.1;Amphipol Synthesis;161
10.5.4.2;Isolation of PS2 Core Complexes;161
10.5.4.3;Analytical Size Exclusion Chromatography;161
10.5.4.4;PS2 Activity Measurements;161
10.5.5;Results;162
10.5.5.1;Interaction of Amphipols with PS2 Core Centers;162
10.5.5.2;Size Exclusion Chromatography Analysis of PS2/AP Complexes;162
10.5.5.3;Oxygen Evolving Activity of AP-Trapped PS2 Core Centers;163
10.5.5.4;Long-Term Stability of PS2;164
10.5.6;Discussion & Outlook;164
10.5.7;Acknowledgements;166
10.5.8;References;167
10.6;Monolayers and Longmuir-Blodgett Films of Photosystem I on Various Subphase Surfaces;169
10.6.1;Abstract;169
10.6.2;Keywords;169
10.6.3;Introduction;169
10.6.4;Experimental Section;170
10.6.4.1;Materials;170
10.6.4.2;Monolayers and Langmuir-Blodgett Films;170
10.6.4.3;QCM Measurements;170
10.6.4.4;Spectroscopic Measurements;171
10.6.4.5;Electrochemical Measurements;171
10.6.5;Results and Discussion;171
10.6.5.1;Monolayer Behaviors of PSl on Various Subphase Surfaces;171
10.6.5.2;In Situ Absorption Spectra at the Air-water Interface;172
10.6.5.3;Langmuir-Blodgett Films of PSl;173
10.6.5.4;QCM Response of the PS I LB Monolayer;175
10.6.5.5;Cyclic Voltammogram of PS I-PBV Complex Film;175
10.6.6;Conclusions;176
10.6.7;Acknowledgement;176
10.6.8;References;176
10.7;Modular Device for Hydrogen Production: Optimization of (Individual) Components;179
10.7.1;Abstract;179
10.7.2;Keywords;179
10.7.3;Introduction;179
10.7.4;Materials and Methods;180
10.7.4.1;Construction of His-Tagged PSl-Subunit psaF and PS2-Subunit psbB;180
10.7.4.2;Transformation of Thermosynechococcus Elongatus BP-1;180
10.7.4.3;Isolation of PS2 Core Complexes and Activity Measurements;181
10.7.4.4;Isolation of PSl Core Complexes and Activity Measurements;181
10.7.4.5;SDS-PAGE Analysis;181
10.7.4.6;Analytical Size Exclusion Chromatography;181
10.7.5;Results;181
10.7.5.1;Construction of His-Tagged PS1 and PS2 from Thermosynechococcus Elongatus;181
10.7.5.2;Purification of the His-Tagged Photosystems;182
10.7.6;Discussion and Outlook;185
10.7.6.1;His-Tagged Photosystems;185
10.7.7;Acknowledgements;186
10.7.8;References;186
11;Appendices;189
11.1;List of Participants;191
11.2;Author Index;195



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.