E-Book, Englisch, Band Volume 48, 301 Seiten, Web PDF
Reihe: European Materials Research Society Symposia Proceedings
Roosen / Agulló-López / Schirmer Photorefractive Materials
1. Auflage 2013
ISBN: 978-1-4832-9057-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings: Symposium C on Photorefractive Materials: Growth/Doping, Optical and Electrical Characterizations, Charge Transfer Processes/Space Charge Field Effects, Applications of 1994 E-MRS Spring Conference, Strasbourg, France, May 24-27, 1994
E-Book, Englisch, Band Volume 48, 301 Seiten, Web PDF
Reihe: European Materials Research Society Symposia Proceedings
ISBN: 978-1-4832-9057-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The papers presented here reflect the core of the scientific activities that took place at the 1994 E-MRS conference. The contributions indicate that the field of photorefractive materials is advancing vigorously, moving into new classes of compounds, finding ways for the judicious tailoring of the microscopic properties of the materials - based on increased insight into the features of defects or quantum wells - and leading to new applications, often made possible by the advances at the forefront of the materials. The many papers presented by European participants emphasised the large amount of work being carried out here. Stimulating contributions also came from the United States and Japan, while papers presented by members from the industrial world indicate the importance of the field in this sector.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Photorefractive Materials;4
3;Copyright Page;5
4;Table of Contents;10
5;Preface;6
6;Sponsors;8
7;Part I: Insulating Materials: Growth and Characterization;14
7.1;Chapter 1. Optically induced charge transfer paths between defects in BaTiO3 containing rhodium;14
7.1.1;Abstract;14
7.1.2;1. Introduction;14
7.1.3;2. Method and experimental details;15
7.1.4;3. Results and their interpretation;15
7.1.5;4. Discussion;17
7.1.6;References;18
7.2;Chapter 2. Dual wavelength characterisation of shallow traps in 'blue' BaTiO3;19
7.2.1;Abstract;19
7.2.2;1. Introduction;19
7.2.3;2. Theoretical framework;20
7.2.4;3. Comparison between the numerical model and experiments;22
7.2.5;4. Conclusions;23
7.2.6;References;23
7.3;Chapter 3. Observation and interpretation of photocurrents in KTaO3 : Li single crystals;24
7.3.1;Abstract;24
7.3.2;1. Introduction;24
7.3.3;2. Experimental conditions and results;25
7.3.4;3. Explanation of the photoconductivity and electronic impurity structure calculation;26
7.3.5;4. Conclusion;28
7.3.6;References;28
7.4;Chapter 4. Growth of SBN single crystals by Stepanov technique for photorefractive applications;29
7.4.1;Abstract;29
7.4.2;1. Introduction;29
7.4.3;2. Crystal growth;29
7.4.4;3. Stepanov technique; comparison with Czochralski method;30
7.4.5;4. Crystal characterization;31
7.4.6;5. Photorefractive properties;32
7.4.7;6. Conclusions;33
7.4.8;References;34
7.5;Chapter 5. Ion-beam/channeling characterization of LiNbO3: interaction between impurity sites;35
7.5.1;Abstract;35
7.5.2;1. Introduction;35
7.5.3;2. Summary of ion-beam results on impurity location;36
7.5.4;3. Interaction between Mg and Hf impurity sites;36
7.5.5;Acknowledgments;39
7.5.6;References;39
7.6;Chapter 6. Elastic and piezoelectric constants of Bi12TiO20 crystals;40
7.6.1;Abstract;40
7.6.2;References;41
7.7;Chapter 7. Local measurement system for optical and electro-optic characterization and homogeneity analysis of photorefractive sillenite crystals;43
7.7.1;Abstract;43
7.7.2;1. Introduction;43
7.7.3;2. Measurement methodologies;44
7.7.4;3. Experimental set-up;45
7.7.5;4. Results;46
7.7.6;5. Conclusion;48
7.7.7;Acknowledgement;48
7.7.8;References;48
7.8;Chapter 8. Shallow traps in doped SBN crystals;49
7.8.1;Abstract;49
7.8.2;1. Theoretical introduction;49
7.8.3;2. Fanning brightness and passive ring mirrorr eflectivity;50
7.8.4;3. Four-wave mixing dynamics for a signal of varying in time spatial structure;50
7.8.5;4. Quark decay of gratings;51
7.8.6;5. Conclusion;51
7.8.7;Acknowledgement;51
7.8.8;References;52
7.9;Chapter 9. P-doping growth of photorefractive Bi12TiO20 single crystals;53
7.9.1;Abstract;53
7.9.2;1. Introduction;53
7.9.3;2. Single crystal growth experiments;53
7.9.4;3. Crystal habit of P-doped BTO;54
7.9.5;4. Optical properties of P-doped BTO;55
7.9.6;5. Synthesis of Bi12PO20-* (BPO);56
7.9.7;6. Summary;57
7.9.8;Acknowledgement;57
7.9.9;References;57
7.10;Chapter 10. Influence of initial conditions on the optical and electrical characterisation of sillenite-type crystals;58
7.10.1;Abstract;58
7.10.2;1. Introduction;58
7.10.3;2. Experimental results;58
7.10.4;3. Discussion;61
7.10.5;Acknowledgements;61
7.10.6;References;62
8;Part II:
Bulk Materials for the Infrared;63
8.1;Chapter 11. Optical and EPR properties of V and Ti ions in CdTe;63
8.1.1;Abstract;63
8.1.2;1. Introduction;63
8.1.3;2. EPR of CdTe: V;63
8.1.4;3. Optical data of CdTe:V;66
8.1.5;4. EPR of CdTe:Ti;67
8.1.6;5. Optical data of CdTe:Ti;68
8.1.7;6. Conclusions;69
8.1.8;References;70
8.2;Chapter 12. Optically detected magnetic resonance investigations on titanium and vanadium ions in CdTe;71
8.2.1;Abstract;71
8.2.2;1. Introduction;71
8.2.3;2. Samples and experimental;71
8.2.4;3. Experimental results;72
8.2.5;4. Summary;74
8.2.6;References;74
8.3;Chapter 13. Characterization of Ti and V doped CdTe by time dependent charge measurement (TDCM) and photoinduced current transient spectroscopy (PICTS);75
8.3.1;Abstract;75
8.3.2;1. Introduction;75
8.3.3;2. Experimental details;76
8.3.4;3. Discussion of the experimental results;78
8.3.5;4. Conclusion;79
8.3.6;References;79
8.4;Chapter 14. Behaviour of hole and electron dominated photoretractive CdTe: V crystals under external continuous or periodic electric field;80
8.4.1;Abstract;80
8.4.2;1. Introduction;80
8.4.3;2. Experimental details;80
8.4.4;3. Photorefractive characteristics;81
8.4.5;4. Discussion;83
8.4.6;5. Conclusion;83
8.4.7;Acknowledgement;84
8.4.8;References;84
8.5;Chapter 15. Observation of the photorefractive effect in vanadium-doped CdMnTe;85
8.5.1;Abstract;85
8.5.2;References;87
8.6;Chapter 16. Photorefractive effect in (001 )-cut GaAs at short pulse excitation;88
8.6.1;Abstract;88
8.6.2;1. Introduction;88
8.6.3;2. Samples and techniques;89
8.6.4;3. Carrier and space charge field dynamics;89
8.6.5;4. Experimental data;90
8.6.6;5. Discussion;92
8.6.7;6. Conclusion;93
8.6.8;Acknowledgement;93
8.6.9;References;93
8.7;Chapter 17. Comparative study of CdTe and GaAs photorefractive performances from 1 µm to 1.55 µm;94
8.7.1;Abstract;94
8.7.2;1. Introduction;94
8.7.3;2. Experimental set-up and samples;94
8.7.4;3. Experimental results in CdTe;95
8.7.5;4. Experimental results in GaAs;96
8.7.6;5. Comparison between CdTe and GaAs;96
8.7.7;6. Conclusion;97
8.7.8;References;97
8.8;Chapter 18. Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu;98
8.8.1;Abstract;98
8.8.2;1. Introduction;98
8.8.3;2. Experimental methods;98
8.8.4;3. Experimental results;99
8.8.5;4. Discussion;100
8.8.6;5. Conclusions;101
8.8.7;References;101
8.9;Chapter 19. Crystal growth and characterization of CdTe doped with transition metal elements;102
8.9.1;Abstract;102
8.9.2;1. Introduction;102
8.9.3;2. Crystal growth;102
8.9.4;3. Chemical analysis;103
8.9.5;4. Crystallographic properties;103
8.9.6;5. Mechanical properties;103
8.9.7;6. Optical properties of V-doped crystals;104
8.9.8;7. Conclusions;105
8.9.9;Acknowledgments;105
8.9.10;References;105
8.10;Chapter 20. Characterization and identification of the deep levels in V doped CdTe and their relationship with the photorefractive properties;107
8.10.1;Abstract;107
8.10.2;1. Introduction;107
8.10.3;2. Experimental details;108
8.10.4;3. Results and discussions;110
8.10.5;Acknowledgements;112
8.10.6;References;112
8.11;Chapter 21. On the mobility-lifetime product in GaAs determined byphotorefractive measurements;113
8.11.1;Abstract;113
8.11.2;References;116
8.12;Chapter 22. Photorefractive effect in GaAs at low temperature:influence of the metastable state of the EL2 defect;117
8.12.1;Abstract;117
8.12.2;1. Introduction;117
8.12.3;2. Set-up and sample;117
8.12.4;3. Experimental results;118
8.12.5;4. The EL2 defect and its metastable state;119
8.12.6;5. Theoretical background;120
8.12.7;6. Conclusion;122
8.12.8;Acknowledgments;122
8.12.9;References;122
8.13;Chapter 23. Picosecond transient gratings in GaAs: experiments and modelling;123
8.13.1;Abstract;123
8.13.2;1. Introduction;123
8.13.3;2. Experimental details;123
8.13.4;3. Grating type at high photonic excitation;124
8.13.5;4. Gratings kinetics;124
8.13.6;5. Optical erasure of gratings;125
8.13.7;6. Conclusion;127
8.13.8;References;127
8.14;Chapter 24. Effective trap concentration in photo refractive CdTe: V and ZnCdTe : V crystals;128
8.14.1;Abstract;128
8.14.2;1. Introduction;128
8.14.3;2. Crystal growth;128
8.14.4;3. Experimental results;129
8.14.5;4. Discussion;130
8.14.6;Acknowledgments;130
8.14.7;References;131
8.15;Chapter 25. Density of states in the gap of CdTe : V deduced from the modulated photocurrent technique;132
8.15.1;Abstract;132
8.15.2;1. Introduction;132
8.15.3;2. Experiments;132
8.15.4;3. Results and discussion;133
8.15.5;4. Conclusions;136
8.15.6;Acknowledgements;136
8.15.7;References;136
9;Part III:
Photorefractive Characterization;137
9.1;Chapter 26. The photorefractive effect for neutron and synchrotron radiation;137
9.1.1;Abstract;137
9.1.2;1. The photorefractive effect - an introduction;137
9.1.3;2. Basic considerations on the electro-optic effect;137
9.1.4;3. Neutron electro-optics;138
9.1.5;4. Other photorefractive mechanisms relevant to particle radiation;140
9.1.6;Acknowledgement;141
9.1.7;References;141
9.2;Chapter 27. Temperature dependence of photorefractive properties of Cr-doped potassium sodium strontium barium niobate;142
9.2.1;Abstract;142
9.2.2;1. Introduction;142
9.2.3;2. Theoretical treatment;142
9.2.4;3. Experiment;144
9.2.5;4. Conclusion;145
9.2.6;Acknowledgments;145
9.2.7;References;146
9.3;Chapter 28. Photorefractive effects in LiNbO3: Fe,Me at high light intensities;147
9.3.1;Abstract;147
9.3.2;References;150
9.4;Chapter 29. Time evolution of photorefractive fixing processes in LiNbO3;151
9.4.1;Abstract;151
9.4.2;1. Introduction;151
9.4.3;2. Experimental details;152
9.4.4;3. Results;152
9.4.5;4. Temperature dependence;153
9.4.6;5. "Short-waiting" versus "long-waiting" fixing kinetics;153
9.4.7;Acknowledgments;154
9.4.8;References;154
9.5;Chapter 30. Photorefractive effect in the Fourier plane;155
9.5.1;Abstract;155
9.5.2;1. Introduction;155
9.5.3;2. The Whole Beam Method;155
9.5.4;3. Nonlinearity of the photorefractive response;156
9.5.5;4. Index variation;158
9.5.6;5. Conclusion;159
9.5.7;Acknowledgements;159
9.5.8;References;159
9.6;Chapter 31. Picosecond laser pulse induced effects in bismuth-tellurite, Bi2TeO5;160
9.6.1;Abstract;160
9.6.2;1. Introduction;160
9.6.3;2. Experimental techniques and results;160
9.6.4;3. Discussion;162
9.6.5;4. Conclusion;163
9.6.6;Acknowledgment;164
9.6.7;References;164
9.7;Chapter 32. Effect of light phase-shifts on photorefractive kinetics:linear regime;165
9.7.1;Abstract;165
9.7.2;1. Introduction;165
9.7.3;2. Theoretical background;165
9.7.4;3. Results;166
9.7.5;References;168
9.8;Chapter 33. Temporal behaviour of the phase conjugate wave obtained by means of a BaTiO3 crystal in a CAT configuration;169
9.8.1;Abstract;169
9.8.2;1. Introduction;169
9.8.3;2. Experimental set-up and relevant results;169
9.8.4;3. Discussion of the experimental results;171
9.8.5;4. Conclusion;173
9.8.6;Acknowledgemen;174
9.8.7;References;174
9.9;Chapter 34. Influence of different impurities on light-induced scattering in doped LiNbO3 crystals;175
9.9.1;Abstract;175
9.9.2;References;178
9.10;Chapter 35. Laser-induced transient gratings in LiNbO3:Fe;179
9.10.1;Abstract;179
9.10.2;1. Introduction;179
9.10.3;2. Experimental methods;180
9.10.4;3. Results and discussion;180
9.10.5;4. Conclusions;182
9.10.6;Acknowledgements;182
9.10.7;References;182
9.11;Chapter 36. Influence of the ac field frequency on the photorefractive response in Bi12SiO20;183
9.11.1;Abstract;183
9.11.2;References;186
9.12;Chapter 37. Numerical simulation of the time evolution of photorefractive phase conjugate beams: Multigrating operation;187
9.12.1;Abstract;187
9.12.2;1. Introduction;187
9.12.3;2. Numerical method;187
9.12.4;3. Results;188
9.12.5;Acknowledgments;190
9.12.6;References;190
10;Part IV:
Quantum Wells and New Materials;191
10.1;Chapter 38. Photorefractive multiple quantum well materials and applications to signal processing;191
10.1.1;Abstract;191
10.1.2;References;198
10.2;Chapter 39. Room temperature photorefractive effect in CdTe/CdZnTe multi quantum wells;200
10.2.1;Abstract;200
10.2.2;1. Introduction;200
10.2.3;2. Principle of the DI-SEED;201
10.2.4;3. Experiments;201
10.2.5;4. Discussion and conclusion;203
10.2.6;References;203
10.3;Chapter 40. The photorefractive effect in terbium gallium garnet;204
10.3.1;Abstract;204
10.3.2;1. Introduction;204
10.3.3;2. Experimental;204
10.3.4;3. Results;205
10.3.5;4. Discussion;207
10.3.6;5. Conclusion;207
10.3.7;Acknowledgement;207
10.3.8;References;208
10.4;Chapter 41. Fast photorefractive materials using quantum wells;209
10.4.1;Abstract;209
10.4.2;1. Advantages of quantum well over bulk photorefractives;209
10.4.3;2. Previous work on quantum well photorefractives;210
10.4.4;3. Layers of InAs-islands as lateral diffusion stoppers;211
10.4.5;4. Quantum well photorefractive device with no electrical contacts;212
10.4.6;References;213
10.5;Chapter 42. Nonlinear photorefractive polymers;215
10.5.1;Abstract;215
10.5.2;1. Introduction;215
10.5.3;2. Requirements for the development of a photorefractive polymer;216
10.5.4;3. Four-wave mixing and two-beam coupling experiments;217
10.5.5;4. Birefringence and electro-optic effects in photorefractive polymers;217
10.5.6;5. Conclusion;218
10.5.7;References;218
10.6;Chapter 43. Optically produced local space charge field in a quantum heterostructure; towards an all-optical thin film photorefractive device;219
10.6.1;Abstract;219
10.6.2;References;222
10.7;Chapter 44. Model of resonant electrooptical effect near exciton peak for MQW structures;223
10.7.1;Abstract;223
10.7.2;1. Introduction;223
10.7.3;2. Basics of the model;224
10.7.4;3. Calculations of effective electrooptic coefficient;224
10.7.5;4. Discussion;224
10.7.6;References;226
10.8;Chapter 45. Electric field and refractive-index change of a deep-impurity doped single hetero-structures;227
10.8.1;Abstract;227
10.8.2;References;230
11;Part V:
Applications of the Photorefractive Effect;231
11.1;Chapter 46. Holographic storage – the quest for the ideal material continues;231
11.1.1;Abstract;231
11.1.2;1. Introduction;231
11.1.3;2. Concepts and features of holographic storage;232
11.1.4;3. Progress in the enabling technologies;233
11.1.5;4. Material requirements;233
11.1.6;5. Photorefractive materials;234
11.1.7;6. Material cost;235
11.1.8;7. Summary;235
11.1.9;References;235
11.2;Chapter 47. Demonstrator concepts and performance of a photorefractive optical novelty filter;237
11.2.1;Abstract;237
11.2.2;1. Introduction;237
11.2.3;2. Experiments and results;238
11.2.4;3. Image processing;240
11.2.5;4. Conclusion;241
11.2.6;References;241
11.3;Chapter 48. Photorefractive BaTiO3: an efficient material for laser wavefront correction;242
11.3.1;Abstract;242
11.3.2;1. Introduction;242
11.3.3;2. Beam clean-up arrangement;242
11.3.4;3. Self-pumped phase conjugating mirror configuration;244
11.3.5;4. Conclusion;246
11.3.6;Acknowledgments;246
11.3.7;References;246
11.4;Chapter 49. Investigation of the time behaviour of different self-pumped phase conjugating mirrors for the application in interferometric systems;247
11.4.1;Abstract;247
11.4.2;1. Introduction;247
11.4.3;2. Experimental setup;249
11.4.4;3. Experimental results;250
11.4.5;4. Summary and conclusions;251
11.4.6;References;252
11.5;Chapter 50. Holographic memory using long photorefractive fiber array;253
11.5.1;Abstract;253
11.5.2;1. Introduction;253
11.5.3;2. Desirable performance and device requirements;253
11.5.4;3. Optical implementation;254
11.5.5;4. Image holography;254
11.5.6;5. Spectral volume holography;257
11.5.7;6. Experiment;258
11.5.8;7. Summary;258
11.5.9;Acknowledgements;259
11.5.10;References;259
11.6;Chapter 51. Phase conjugate mirrors on the base of Bi12TiO20 photorefractive fibre;260
11.6.1;Abstract;260
11.6.2;1. Introduction;260
11.6.3;2. Experimental configuration;260
11.6.4;3. Fanning effect;261
11.6.5;4. Double phase-conjugate mirror;262
11.6.6;5. Conclusion;263
11.6.7;Acknowledgement;264
11.6.8;References;264
11.7;Chapter 52. UV induced densifîcation during Bragg grating inscription inGe: SiO2 preforms: interferometric microscopy investigations;265
11.7.1;Abstract;265
11.7.2;1. Introduction;265
11.7.3;2. Experimental details and preliminary experiments;265
11.7.4;3. Results;267
11.7.5;4. Discussion;268
11.7.6;5. Conclusion;269
11.7.7;Acknowledgements;269
11.7.8;References;270
11.8;Chapter 53. Deeply modulated stabilized photorefractive recording in LiNbO3:Fe;271
11.8.1;Abstract;271
11.8.2;1. Introduction;271
11.8.3;2. Self-stabilized holographic recording;271
11.8.4;3. Beyond 100% diffraction efficiency;273
11.8.5;4. Photorefractive sensitivity;273
11.8.6;5. Conclusions;274
11.8.7;Acknowledgments;274
11.8.8;References;274
11.9;Chapter 54. Cross-talk in multiplexed holograms using angular selectivityin LiNb03;275
11.9.1;Abstract;275
11.9.2;1. Introduction;275
11.9.3;2. Theoretical treatment;276
11.9.4;3. Experimental setup;276
11.9.5;4. Results;277
11.9.6;5. Discussion and conclusions;278
11.9.7;Acknowledgements;279
11.9.8;References;279
11.10;Chapter 55. Coherent erasure and updating of holograms in LiNbO3;280
11.10.1;Abstract;280
11.10.2;1. Introduction;280
11.10.3;2. Results;280
11.10.4;3. Discussion and conclusions;282
11.10.5;Acknowledgements;283
11.10.6;References;283
11.11;Chapter 56. Refreshed photorefractive buffer memory for permanent readout;284
11.11.1;Abstract;284
11.11.2;1. Introduction;284
11.11.3;2. Refreshing;285
11.11.4;3. Experimental demonstration;286
11.11.5;4. Conclusion;287
11.11.6;Acknowledgment;287
11.11.7;References;287
11.12;Chapter 57. General formalism for angular and phase-encoding multiplexing in holographic image storage;289
11.12.1;Abstract;289
11.12.2;1. Introduction;289
11.12.3;2. Theoretical formalism;290
11.12.4;3. Conclusion;293
11.12.5;References;293
11.13;Chapter 58. The relation between temperature gradients and structural perfection of single-crystal Bi12SiO20 and Bi12TiO20 fibers grown by the LHPG method;294
11.13.1;Abstract;294
11.13.2;1. Introduction;294
11.13.3;2. Experimental;295
11.13.4;3. Discussion;295
11.13.5;4. Conclusion;297
11.13.6;References;297
11.14;Chapter 59. Holographic double-exposure interferometry with tetragonal KTa1–xNbxO: Fe crystals;298
11.14.1;Abstract;298
11.14.2;1. Introduction;298
11.14.3;2. Experimental methods;299
11.14.4;3. Results and discussion;300
11.14.5;4. Conclusions;300
11.14.6;Acknowledgement;301
11.14.7;References;301