Rothwell / Cloud | Electromagnetics, Second Edition | E-Book | sack.de
E-Book

E-Book, Englisch, 704 Seiten

Reihe: Electrical Engineering Textbook Series

Rothwell / Cloud Electromagnetics, Second Edition


2. Auflage 2011
ISBN: 978-1-4200-6448-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 704 Seiten

Reihe: Electrical Engineering Textbook Series

ISBN: 978-1-4200-6448-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Providing an ideal transition from introductory to advanced concepts, Electromagnetics, Second Edition builds a foundation that allows electrical engineers to confidently proceed with the development of advanced EM studies, research, and applications.

This second edition of a popular text continues to offer coverage that spans the entire field, from electrostatics to the integral solutions of Maxwell’s equations. The book provides a firm grounding in the fundamental concepts of electromagnetics and bolsters understanding through the use of classic examples in shielding, transmission lines, waveguides, propagation through various media, radiation, antennas, and scattering. Mathematical appendices present helpful background information in the areas of Fourier transforms, dyadics, and boundary value problems. The second edition adds a new and extensive chapter on integral equation methods with applications to guided waves, antennas, and scattering.

Utilizing the engaging style that made the first edition so appealing, this second edition continues to emphasize the most enduring and research-critical electromagnetic principles.

Rothwell / Cloud Electromagnetics, Second Edition jetzt bestellen!

Weitere Infos & Material


Introductory concepts
Notation, conventions, and symbology
The field concept of electromagnetics
The sources of the electromagnetic field
Problems

Maxwell’s theory of electromagnetism
The postulate
Maxwell’s equations in moving frames
The Maxwell–Boffi equations
Large-scale form of Maxwell’s equations
The nature of the four field quantities
Maxwell’s equations with magnetic sources
Boundary (jump) conditions
Fundamental theorems
The wave nature of the electromagnetic field
Problems

The static electromagnetic field
Static fields and steady currents
Electrostatics
Magnetostatics
Static field theorems
Problems

Temporal and spatial frequency domain representation
Interpretation of the temporal transform
The frequency-domain Maxwell equations
Boundary conditions on the frequency-domain fields
The constitutive and Kronig–Kramers relations
Dissipated and stored energy in a dispersive medium
Some simple models for constitutive parameters
Monochromatic fields and the phasor domain
Poynting’s theorem for time-harmonic fields
The complex Poynting theorem
Fundamental theorems for time-harmonic fields
The wave nature of the time-harmonic EM field
Interpretation of the spatial transform
Spatial Fourier decomposition
Periodic fields and Floquet’s theorem
Problems

Field decompositions and the EM potentials
Spatial symmetry decompositions
Solenoidal–lamellar decomposition
Transverse–longitudinal decomposition
TE–TM decomposition
Problems

Integral solutions of Maxwell’s equations
Vector Kirchhoff solution
Fields in an unbounded medium
Fields in a bounded, source-free region
Problems

Integral equations in electromagnetics
A brief overview of integral equations
Plane-wave reflection from an inhomogeneous region
Solution to problems involving thin wires
Solution to problems involving two-dimensional conductors
Scattering by a penetrable cylinder
Problems

Mathematical appendix
The Fourier transform
Vector transport theorems
Dyadic analysis
Boundary value problems

Useful identities

Some Fourier transform pairs

Coordinate systems

Properties of special functions
Bessel functions
Legendre functions
Spherical harmonics

Derivation of an integral identity
References
Index



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.