Saeed / Gazem / Patnaik | Recent Trends in Information and Communication Technology | E-Book | sack.de
E-Book

E-Book, Englisch, Band 5, 931 Seiten, eBook

Reihe: Lecture Notes on Data Engineering and Communications Technologies

Saeed / Gazem / Patnaik Recent Trends in Information and Communication Technology

Proceedings of the 2nd International Conference of Reliable Information and Communication Technology (IRICT 2017)
1. Auflage 2018
ISBN: 978-3-319-59427-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 2nd International Conference of Reliable Information and Communication Technology (IRICT 2017)

E-Book, Englisch, Band 5, 931 Seiten, eBook

Reihe: Lecture Notes on Data Engineering and Communications Technologies

ISBN: 978-3-319-59427-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents 94 papers from the 2nd International Conference of Reliable Information and Communication Technology 2017 (IRICT 2017), held in Johor, Malaysia, on April 23–24, 2017. Focusing on the latest ICT innovations for data engineering, the book presents several hot research topics, including advances in big data analysis techniques and applications; mobile networks; applications and usability; reliable communication systems; advances in computer vision, artificial intelligence and soft computing; reliable health informatics and cloud computing environments, e-learning acceptance models, recent trends in knowledge management and software engineering; security issues in the cyber world; as well as society and information technology.
Saeed / Gazem / Patnaik Recent Trends in Information and Communication Technology jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;IRICT-2017 Organizing Committee;8
2.1;Patron;8
2.2;Honorary Chair;8
2.3;International Advisory Board;8
2.4;Conference Chair;9
2.5;Program Committee Co-chairs;9
2.6;Secretariat;9
2.7;Publicity Committee;9
2.8;Publications Committee;9
2.9;IT Committee;10
2.10;Logistic Committee;10
2.11;Treasure Committee;10
2.12;Registration Committee;10
2.13;Sponsorship;11
2.14;International Technical Committee;11
3;Contents;12
4;Big Data Analysis Techniques and Applications;22
5;Prediction of Financial Distress for Electricity Sectors Using Data Mining;23
5.1;Abstract;23
5.2;1 Introduction;23
5.3;2 Methodology;24
5.3.1;2.1 Models for Predicting Financial Distress and Forecasting Probability of Default;24
5.3.2;2.2 Financial Indicators;25
5.4;3 Results and Discussion;26
5.4.1;3.1 Prediction Performance of Data Mining Techniques;26
5.4.2;3.2 Importance of Financial Indicators;29
5.5;4 Conclusion;30
5.6;References;30
6;Predictive Modeling for Dengue Patient’s Length of Stay (LoS) Using Big Data Analytics (BDA);32
6.1;Abstract;32
6.2;1 Introduction;32
6.3;2 Background;33
6.3.1;2.1 Big Data;33
6.3.2;2.2 Big Data Analytics in Healthcare;33
6.3.3;2.3 Electronic Medical Records (EMR) System;34
6.3.4;2.4 Hospital Length of Stay (LoS);34
6.3.5;2.5 Dengue Disease;35
6.3.6;2.6 Related Work;35
6.4;3 Methodology;36
6.4.1;3.1 Data Description;36
6.4.2;3.2 Predictive Modeling;37
6.4.2.1;3.2.1 Regression Analysis;37
6.5;4 Results;37
6.5.1;4.1 Statistics and Descriptive Analyses;37
6.6;5 Conclusions and Future Works;38
6.7;Acknowledgments;39
6.8;References;39
7;Experimental Performance Analysis of B+-Trees with Big Data Indexing Potentials;40
7.1;Abstract;40
7.2;1 Introduction;40
7.3;2 Methodology;42
7.3.1;2.1 Experimental Metrics;42
7.3.2;2.2 Experimental Setup;43
7.3.3;2.3 Querying the B+-Tree;43
7.4;3 Experimental Results and Discussions;43
7.4.1;3.1 Results Presentations;43
7.4.2;3.2 Discussions;47
7.5;4 Conclusion;48
7.6;References;48
8;A Proposed Methodology for Integrating Oil and Gas Data Using Semantic Big Data Technology;50
8.1;Abstract;50
8.2;1 Introduction;50
8.3;2 Related Works;51
8.3.1;2.1 Big Data and the Semantic Web;52
8.4;3 Proposed Framework;53
8.5;4 Result;54
8.6;5 Conclusion;56
8.7;References;56
9;Molecular Similarity Searching with Different Similarity Coefficients and Different Molecular Descriptors;59
9.1;Abstract;59
9.2;1 Introduction;59
9.3;2 State of the Art;60
9.4;3 Concept and Method;61
9.4.1;3.1 Similarity Measure;62
9.5;4 Experimental Design;63
9.6;5 Results;64
9.7;6 Conclusion;65
9.8;Acknowledgments;65
9.9;References;66
10;Classification of Arabic Writer Based on Clustering Techniques;68
10.1;Abstract;68
10.2;1 Introduction;68
10.3;2 Related Work;69
10.4;3 Dataset;70
10.5;4 Methodology;71
10.5.1;4.1 Pre-processing;71
10.5.2;4.2 Connected-Components;71
10.5.3;4.3 Feature Extraction;71
10.5.4;4.4 Feature Combination;72
10.5.5;4.5 Clustering (Classification);73
10.6;5 Results and Discussion;74
10.7;6 Conclusions;76
10.8;References;76
11;Data Pre-processing Techniques for Publication Performance Analysis;79
11.1;Abstract;79
11.2;1 Introduction;79
11.3;2 Related Studies;80
11.3.1;2.1 Research Performance Measurement;80
11.3.2;2.2 Data Pre-processing;82
11.4;3 Materials and Methods;82
11.4.1;3.1 Datasets;82
11.4.2;3.2 Data Pre-processing Approach;83
11.5;4 Results and Discussions;84
11.6;5 Conclusion;85
11.7;Acknowledgement;85
11.8;References;85
12;Data Mining Techniques: A Systematic Mapping Review;86
12.1;Abstract;86
12.2;1 Introduction;86
12.3;2 Background;87
12.4;3 Methodology;88
12.4.1;3.1 Research Questions;88
12.4.2;3.2 Literature Search;88
12.4.3;3.3 Study Selection;89
12.4.4;3.4 Data Extraction;90
12.4.5;3.5 Validity;90
12.5;4 Results;90
12.5.1;4.1 RQ-1: What Are the Major Methods for Conducting Web Data Mining?;90
12.5.2;4.2 RQ-2: Which Topics in Web Data Mining Are Covered?;91
12.5.3;4.3 RQ-3: When and Where Were the Studies Published?;92
12.5.4;4.4 RQ-4: How Were Studies Performed in Terms of Visualization of the Results?;93
12.6;5 Discussion;94
12.6.1;5.1 Data Warehousing;94
12.6.2;5.2 Hyperlinks;94
12.6.3;5.3 Web Mining;95
12.7;6 Conclusion and Recommendations;96
12.8;References;96
13;A Comprehensive Study on Opinion Mining Features and Their Applications;98
13.1;Abstract;98
13.2;1 Introduction;98
13.2.1;1.1 Opinion Mining and Sentiment Analysis;99
13.3;2 Features of Reviews, Reviewers, Group of Reviewers and Target;99
13.4;3 Linguistic Features;101
13.5;4 Structural Features;103
13.6;5 Conclusion;106
13.7;Acknowledgments;106
13.8;References;106
14;Mobile Networks, Applications and Usability;110
15;Adaptive Hybrid Geo-casting Routing Protocol for Mobile Ad hoc Networks;111
15.1;Abstract;111
15.2;1 Introduction;111
15.3;2 Related Work;112
15.4;3 Methodology;112
15.5;4 Performance Evaluation;114
15.5.1;4.1 Simulation Overview;114
15.5.2;4.2 Simulation Result;115
15.5.2.1;4.2.1 Effect of Moving Speed;115
15.5.2.2;4.2.2 Effect of Data Traffic Loads;116
15.6;5 Conclusions;117
15.7;References;117
16;What Makes Older People Want to Use Mobile Devices?;118
16.1;Abstract;118
16.2;1 Introduction;118
16.3;2 Older People;119
16.4;3 Mobile Devices and Factors of Usages;119
16.5;4 Methodology;121
16.5.1;4.1 Interview Questions;121
16.5.2;4.2 Data Analysis;121
16.5.3;4.3 Demographic of Participants;121
16.6;5 Findings and Discussions;122
16.6.1;5.1 Mobile Device Design;122
16.6.2;5.2 Mobile Device Functions;122
16.6.3;5.3 Social Inspiration;123
16.6.4;5.4 Economical;124
16.7;6 Conclusions;124
16.8;Acknowledgments;124
16.9;References;124
17;Mobile Augmented Reality Tourism Application Framework;126
17.1;Abstract;126
17.2;1 Introduction;126
17.3;2 Literature Review;127
17.3.1;2.1 Requirements Pyramid Model;127
17.3.2;2.2 User Requirements;128
17.3.3;2.3 Functional Requirements;128
17.4;3 Methodology;129
17.4.1;3.1 Awareness of Problem;129
17.4.2;3.2 Suggestion;129
17.4.3;3.3 Evaluation;129
17.4.4;3.4 Development;130
17.5;4 Findings;130
17.6;5 Mobile Augmented Reality Tourism Application Framework;131
17.7;6 Conclusion;131
17.8;References;132
18;Motion Artifact Reduction Algorithm Using Sequential Adaptive Noise Filters and Estimation Methods for Mobile ECG;134
18.1;Abstract;134
18.2;1 Introduction;134
18.3;2 The Proposed Algorithm;136
18.4;3 Experimental Results and Discussions;138
18.5;4 Conclusion;139
18.6;Acknowledgment;139
18.7;References;140
19;Concerning Matters of Mobile Device Usage Among Older People;142
19.1;Abstract;142
19.2;1 Introduction;142
19.3;2 Older People;143
19.4;3 Mobile Devices and Older People;143
19.4.1;3.1 Concerning Matters (Effects);144
19.5;4 Methodology;145
19.6;5 Findings and Discussions;145
19.6.1;5.1 Addictions;146
19.6.2;5.2 Relationship Between Human;147
19.6.3;5.3 Misuse;147
19.6.4;5.4 Learning Tool;148
19.7;6 Conclusions;148
19.8;Acknowledgments;148
19.9;References;148
20;Adaptive Memory Size Based Fuzzy Control for Mobile Pedestrian Navigation;150
20.1;Abstract;150
20.2;1 Introduction;150
20.3;2 Concept of Single Distribution Resampling;151
20.4;3 Adaptive Memory Size-Based Fuzzy Control;152
20.5;4 Experiment Result;153
20.6;5 Conclusions and Recommendations for Future Research;157
20.7;References;158
21;Extraction of Common Concepts for the Mobile Forensics Domain;159
21.1;Abstract;159
21.2;1 Introduction;159
21.3;2 Background;160
21.4;3 Method;161
21.4.1;3.1 Models Collection;161
21.4.2;3.2 Concepts Extraction;161
21.4.3;3.3 Common Concepts Selection;169
21.4.4;3.4 Designation of Common Concepts;169
21.5;4 Conclusion;170
21.6;Acknowledgment;170
21.7;References;171
22;Revisiting the Usability of Smartphone User Interface for Elderly Users;173
22.1;Abstract;173
22.2;1 Introduction;173
22.3;2 Literature Review;174
22.4;3 The Preliminary Study;175
22.4.1;3.1 Study Objective;175
22.4.2;3.2 Method;175
22.5;4 Results and Discussions;176
22.5.1;4.1 Usability Issues;176
22.5.2;4.2 Beyond Usability Metrics;177
22.5.2.1;4.2.1 Different Users’ Trends When Using Smartphone;177
22.5.2.2;4.2.2 User Experience with the Smartphone;177
22.5.3;4.3 Implications of the Study’s Findings;178
22.6;5 Conclusion and Future Work;179
22.7;References;179
23;Taguchi Methods for Ad Hoc on Demand Distance Vector Routing Protocol Performances Improvement in VANETs;181
23.1;Abstract;181
23.2;1 Introduction;181
23.3;2 Related Works;183
23.4;3 Taguchi Method;183
23.5;4 Results and Discussion;186
23.6;5 Conclusion;187
23.7;References;187
24;Two Stage Integration of GPS, Kinematic Information, and Cooperative Awareness Messages Using Cascaded Kalman Filters;189
24.1;Abstract;189
24.2;1 Introduction;189
24.3;2 The Proposed Algorithm (GPS/DR/V2V);191
24.3.1;2.1 GPS/DR Fusion Algorithm;191
24.3.2;2.2 GPS/DR/V2V Fusion Algorithm;193
24.4;3 Results and Discussions;194
24.5;4 Conclusion;196
24.6;Acknowledgments;196
24.7;References;196
25;Modeling of GPS Ionospheric Scintillation Using Nonlinear Regression Technique;198
25.1;Abstract;198
25.2;1 Introduction;198
25.3;2 Experimental Setup;199
25.4;3 Method;200
25.5;4 Mathematical Model of S4;202
25.6;5 Investigation of the Mathematical Model;203
25.7;6 Conclusions;205
25.8;Acknowledgments;205
25.9;References;205
26;Hybrid LTE-VANETs Based Optimal Radio Access Selection;207
26.1;Abstract;207
26.2;1 Introduction;208
26.3;2 Related Work;209
26.3.1;2.1 Infrastructure Vehicular Connectivity;209
26.3.2;2.2 Multi-channel Access;209
26.3.3;2.3 DSRC/IEEE 802.11p;210
26.4;3 Proposed Method;212
26.5;4 Performance Evaluations;214
26.6;5 Conclusion;217
26.7;Acknowledgment;217
26.8;References;217
27;Reliable Communication Systems;219
28;Optimization of B-MAC Protocol for Multi-scenario WSN by Differential Evolution Algorithm;220
28.1;Abstract;220
28.2;1 Introduction;220
28.3;2 Related Works;221
28.4;3 Differential Evolution Algorithm;222
28.5;4 Proposed Framework;223
28.6;5 Result and Discussion;225
28.7;6 Conclusion;226
28.8;References;226
29;Power Consumption Optimization Based on B-MAC Protocol for Multi-Scenario WSN by Taguchi Method;227
29.1;Abstract;227
29.2;1 Introduction;227
29.3;2 Related Works;228
29.4;3 Taguchi Method;229
29.4.1;3.1 Planning Phase;230
29.4.2;3.2 Experimental Phase;230
29.4.3;3.3 Analysis Phase;232
29.4.4;3.4 Validation Experiments;233
29.5;4 Conclusion;233
29.6;References;233
30;Modelling and Control of a Non-linear Inverted Pendulum Using an Adaptive Neuro-Fuzzy Controller;235
30.1;Abstract;235
30.2;1 Introduction;235
30.3;2 Mathematical Model;236
30.4;3 ANFIS Controller;238
30.5;4 Simulation Results;238
30.6;5 Comparison with Sugeno FIS;240
30.7;6 Conclusion;241
30.8;References;241
31;Adapted WLAN Fingerprint Indoor Positioning System (IPS) Based on User Orientations;243
31.1;Abstract;243
31.2;1 Introduction;243
31.3;2 Background;244
31.4;3 Related Works;246
31.5;4 Methodology;247
31.6;5 Experiments;248
31.7;6 Result and Discussion;249
31.8;7 Conclusion and Future Work;251
31.9;Acknowledgment;252
31.10;References;252
32;Performance Analysis of the Impact of Design Parameters to Network-on-Chip (NoC) Architecture;254
32.1;Abstract;254
32.2;1 Introduction;254
32.3;2 Related Works;255
32.4;3 Parameters Affected Network-on-Chip (NoC) Performance;256
32.5;4 Routing Algorithm;257
32.6;5 Performance Evaluation;258
32.7;6 Conclusion;262
32.8;References;262
33;A Comparative Review of Adaptive Routing Approach for Network-on-Chip Router Architecture;264
33.1;Abstract;264
33.2;1 Introduction;264
33.3;2 Adaptive Routers;265
33.3.1;2.1 DyAD;266
33.3.2;2.2 SPIN;268
33.3.3;2.3 XGFT;269
33.3.4;2.4 Nostrum;269
33.4;3 Conclusion;270
33.5;References;270
34;Intelligent Routing Algorithm Using Genetic Algorithm (IRAGA);272
34.1;Abstract;272
34.2;1 Introduction;272
34.3;2 Genetic Algorithm;273
34.4;3 GA-Based-Routing Algorithm;273
34.4.1;3.1 GLBR;274
34.4.2;3.2 ARGAQ;274
34.4.3;3.3 MURUGA;275
34.5;4 Proposed Method;276
34.5.1;4.1 Initialization;276
34.5.2;4.2 Fitness Function Calculation;276
34.5.3;4.3 New Population Generation;276
34.5.4;4.4 Crossover Refining Operation;277
34.6;5 Simulation and Analysis;277
34.7;6 Conclusion;279
34.8;References;279
35;Double Curved Tracks Simulation of FSO Link for Ground-to-Train Communications in Tropical Weather;281
35.1;Abstract;281
35.2;1 Introduction;281
35.3;2 FSO Ground-to-Train Communication System Model;282
35.3.1;2.1 Geometrical Model;283
35.3.2;2.2 FSO Link Mathematical Model;285
35.4;3 Simulation Results and Discussion;286
35.4.1;3.1 Rain and Fog Attenuation;286
35.4.2;3.2 FSO G2T Link Simulation Results and Performance Evaluation;288
35.5;4 Conclusions;291
35.6;Acknowledgments;291
35.7;References;291
36;Performance Evaluation of AODV, DSDV, and DSR Routing Protocols in MANET Using NS-2 Simulator;293
36.1;Abstract;293
36.2;1 Introduction;293
36.3;2 Classification of Routing Protocols in MANET;294
36.4;3 Ad-Hoc Routing Protocols;294
36.4.1;3.1 Proactive Routing;295
36.4.2;3.2 Reactive Routing;296
36.5;4 Simulation Setup;297
36.6;5 Performance Metrics and Results;298
36.6.1;5.1 Throughput;298
36.6.2;5.2 Average End-to-End Delay;298
36.6.3;5.3 Packet Loss Rate;299
36.7;6 Conclusions;300
36.8;Acknowledgement;300
36.9;References;301
37;Planning and Optimization of LTE Radio Access Network for Urban Area at Taiz City, Yemen;302
37.1;Abstract;302
37.2;1 Introduction;302
37.3;2 Architecture of LTE Network;303
37.4;3 LTE Network Planning and Optimization;304
37.5;4 Results and Discussions;307
37.6;5 Conclusions;309
37.7;References;310
38;Advances on Computer Vision;311
39;Arabic Sign Language Recognition Using Optical Flow-Based Features and HMM;312
39.1;Abstract;312
39.2;1 Introduction;312
39.3;2 Literature Review;313
39.4;3 Proposed System;315
39.4.1;3.1 Video Segmentation;315
39.4.2;3.2 Arabic Sign Language Recognition;316
39.5;4 Experimental Work;317
39.6;5 Conclusions;319
39.7;Acknowledgments;319
39.8;References;319
40;On the Design of Video on Demand Server-Based Hybrid Storage System;321
40.1;Abstract;321
40.2;1 Introduction;321
40.3;2 Related Work;322
40.4;3 Hybrid Storage System;323
40.4.1;3.1 MMS;324
40.4.2;3.2 DSC Scheme;325
40.5;4 Simulation of the VOD HSS Server;326
40.6;5 Performance Evaluation;327
40.6.1;5.1 Comparison of VOD HSS Architecture with VOD FLARE Architecture;328
40.7;6 Conclusions;329
40.8;References;329
41;An Adaptive Threshold Based on Multiple Resolution Levels for Canny Edge Detection;331
41.1;Abstract;331
41.2;1 Introduction;331
41.3;2 An Adaptive Threshold Based on Multiple Resolution Levels for Canny Edge Detection;333
41.4;3 Experiment and Results;334
41.5;4 Conclusion;337
41.6;Acknowledgements;338
41.7;References;338
42;The Design of an Adaptive Media Playout Technique Based on Fuzzy Logic Control for Video Streaming Over IP Networks;339
42.1;Abstract;339
42.2;1 Introduction;339
42.3;2 Design of FLAMP Technique;340
42.3.1;2.1 Architecture of FLAMP Technique;340
42.3.2;2.2 FLAMP Framework;341
42.3.2.1;2.2.1 Fuzzy Sets of FLAMP Technique;341
42.3.2.2;2.2.2 The Rule Base of FLAMP Technique;342
42.3.2.3;2.2.3 Fuzzy Inference Process of FL342
42.4;3 Performance Metrics and Simulation Results;344
42.4.1;3.1 Performance Metrics;344
42.4.1.1;3.1.1 Buffer Underflow;344
42.4.1.2;3.1.2 Average Buffer Overflow;344
42.4.1.3;3.1.3 Variance of Distortion of Playout (VDoP);344
42.4.2;3.2 Simulation Setting;344
42.4.3;3.3 Simulation Results;345
42.4.3.1;3.3.1 The Count of Buffer Underflow;345
42.4.3.2;3.3.2 The Probability of Buffer Overflow;346
42.4.3.3;3.3.3 The Variation of Distortion of Playout (VDoP);346
42.4.3.4;3.3.3 The Variation of Distortion of Playout (VDoP);346
42.5;4 Conclusion;348
42.6;References;348
43;A Preliminary Study on the Effect of Audio Feedback to Support Comprehension of Web Content Among Non-visual Internet Users;350
43.1;Abstract;350
43.2;1 Introduction;350
43.3;2 Literature Review;352
43.3.1;2.1 Assistive Technology for the Visually Impaired Computer Users;352
43.3.2;2.2 Role of Audio;353
43.3.3;2.3 Language Matters in Transferring Knowledge;353
43.3.4;2.4 Accessibility of the Web Content;354
43.4;3 Methodology;354
43.5;4 Results and Discussion;355
43.6;5 Conclusion;356
43.7;References;357
44;Recognition of Holy Quran Recitation Rules Using Phoneme Duration;358
44.1;Abstract;358
44.2;1 Introduction;358
44.3;2 Literature Review;359
44.3.1;2.1 Related Studies on Phoneme Duration;359
44.3.2;2.2 Affecting Factors on the Phoneme Duration in Quran Recitation;359
44.3.2.1;2.2.1 Levels of Recitation;359
44.3.2.2;2.2.2 Arabic Diacritics (Al-Tashkeel);360
44.3.2.3;2.2.3 The Characteristics of the Letters;361
44.3.2.4;2.2.4 The Ranks of the Nasalization (Ghunnah);362
44.3.2.5;2.2.5 The Medd (Lengthenings);363
44.4;3 Methodology;363
44.4.1;3.1 Data Collection Phase;364
44.4.2;3.2 Preprocessing Phase;364
44.4.3;3.3 Segmentation Phase;364
44.4.4;3.4 Phoneme Duration Modeling;364
44.5;4 Experimental Results and Discussion;364
44.6;5 Conclusion;366
44.7;Acknowledgments;366
44.8;References;366
45;Realistic Rendering Colored Light Shafts Using Light Texture;368
45.1;Abstract;368
45.2;1 Introduction;368
45.3;2 Related Works;369
45.4;3 Method;370
45.4.1;3.1 Light Scattering Model;370
45.4.2;3.2 Colored Light Scattering;371
45.4.3;3.3 Algorithm;372
45.5;4 Results and Discussion;372
45.6;5 Conclusion and Future Work;374
45.7;Acknowledgments;374
45.8;References;375
46;Evaluation of Digital Image Watermarking Techniques;376
46.1;Abstract;376
46.2;1 Introduction;376
46.2.1;1.1 Digital Watermarking;376
46.3;2 Watermarking Classification According to Domain;377
46.3.1;2.1 Spatial Domain Techniques;377
46.3.1.1;2.1.1 Least Significant Bits (LSB);377
46.3.1.2;2.1.2 SSM Modulation Based Techniques;378
46.3.2;2.2 Transform Domain Techniques;379
46.3.2.1;2.2.1 Discrete Fourier Transform (DFT);379
46.3.2.2;2.2.2 Discrete Cosine Transform (DCT);380
46.3.2.3;2.2.3 Discrete Wavelet Transform (DWT);380
46.3.2.4;2.2.4 Singular Value Decomposition (SVD);381
46.4;3 Conclusion and Future Work;382
46.5;References;382
47;An Enhanced Quadratic Angular Feature Extraction Model for Arabic Handwritten Literal Amount Recognition;384
47.1;Abstract;384
47.2;1 Introduction;384
47.3;2 Related Works;385
47.4;3 The Proposed Quadratic Angular Feature Extraction Model;386
47.4.1;3.1 Angular Method;387
47.4.2;3.2 Quadratic Angular Method;388
47.5;4 Result and Discussion;388
47.6;5 Conclusion;390
47.7;Acknowledgments;391
47.8;References;391
48;Semi-automatic Methods in Video Forgery Detection Based on Multi-view Dimension;393
48.1;Abstract;393
48.2;1 Introduction;393
48.3;2 Related Work;394
48.4;3 Processing Method;395
48.4.1;3.1 A New Dimension of Multi-view Frames in Video;396
48.4.2;3.2 Dimension Top View of Video;397
48.4.3;3.3 Dimension Side View of Video;398
48.5;4 Results and Discussions;399
48.6;5 Conclusions;402
48.7;References;402
49;Neuronal Approach for Emotion Recognition Based on Features Motion Estimation;404
49.1;Abstract;404
49.2;1 Introduction;404
49.3;2 Related Works;405
49.4;3 Our Approach;405
49.4.1;3.1 Face Detection;406
49.4.2;3.2 Extraction of Strategic Points;407
49.4.3;3.3 Motion Estimation Features;408
49.4.4;3.4 Description of the Action Units (FACS System);409
49.4.5;3.5 Classification;410
49.5;4 Test;412
49.5.1;4.1 Test Data;412
49.5.2;4.2 Results;413
49.6;5 Conclusion;413
49.7;References;413
50;Segmentation and Enhancement of Fingerprint Images Based on Automatic Threshold Calculations;415
50.1;Abstract;415
50.2;1 Introduction;415
50.3;2 Methodology;416
50.3.1;2.1 Segmentation Features;417
50.3.1.1;2.1.1 Distribution of Image Mean, Variance and Coherence;418
50.3.2;2.2 Foreground Extraction;420
50.3.3;2.3 Filling in the Gaps in a Fingerprint Image;421
50.4;3 Results and Discussion;422
50.5;4 Conclusion;425
50.6;References;425
51;Capturing Haptic Experience Through Users’ Visual Sketches;427
51.1;Abstract;427
51.2;1 Introduction;427
51.3;2 The Usability Studies;430
51.3.1;2.1 Usability Study I;430
51.3.2;2.2 Usability Study II;432
51.4;3 General Discussion;433
51.5;4 Conclusion;434
51.6;References;434
52;A Comparative Study of a New Hand Recognition Model Based on Line of Features and Other Techniques;435
52.1;Abstract;435
52.2;1 Introduction;435
52.3;2 Hand Gesture Recognition Technology;436
52.4;3 Captured Image;436
52.5;4 Segmentation Image;436
52.6;5 Feature Extractions;437
52.7;6 The Classification Process;437
52.8;7 Review of Hand Gesture Recognition;438
52.8.1;7.1 Likelihood Based Classification;438
52.8.2;7.2 Gaussian Mixture Model and Distance Metric;439
52.8.3;7.3 Multi Class Support Vector Machine SVM;439
52.8.4;7.4 Navigation of Image Browsing;440
52.8.5;7.5 SD and Average;440
52.8.6;7.6 Constrained Generative Model CGM Neural Network;441
52.8.7;7.7 Contour and Centroidal Profile;441
52.8.8;7.8 Feed Forward Artificial Neural Networks ANN;442
52.9;8 Summary of the Research;443
52.10;9 Conclusion;444
52.11;References;445
53;Novel FPGA Implementation of EPZS Motion Estimation in H.264 AVC;448
53.1;Abstract;448
53.2;1 Introduction;448
53.3;2 Enhanced Predictive Zonal Search Motion Estimation;450
53.3.1;2.1 Predictor Selection;450
53.3.2;2.2 Adaptive Early Termination;451
53.3.3;2.3 Motion Vector Refinement;452
53.4;3 Hardware Design and Implementation of EPZS;452
53.4.1;3.1 CF and RF Memory Modules;453
53.4.2;3.2 Address Control Unit;453
53.4.3;3.3 SAD Module;454
53.4.4;3.4 ME Module;454
53.4.5;3.5 MC Module;456
53.5;4 Simulation Results;456
53.6;5 Conclusion;459
53.7;References;459
54;Advances on Artificial Intelligence and Soft Computing;461
55;Comparison of Drought Forecasting Using ARIMA and Empirical Wavelet Transform-ARIMA;462
55.1;Abstract;462
55.2;1 Introduction;462
55.3;2 Background Information on Methods;463
55.3.1;2.1 Arima;463
55.3.2;2.2 Empirical Wavelet Transform (EWT);464
55.3.3;2.3 Ewt Arima;465
55.3.4;2.4 Performance Measures;465
55.3.5;2.5 Study Area;466
55.4;3 Results and Discussions;466
55.4.1;3.1 Model Development Result;466
55.4.2;3.2 Model Evaluation;467
55.5;4 Conclusions;470
55.6;Acknowledgments;470
55.7;References;470
56;Real Time Electrocardiogram Identification with Multi-modal Machine Learning Algorithms;472
56.1;Abstract;472
56.2;1 Introduction;472
56.3;2 Background of the Study;474
56.4;3 Methodology;475
56.5;4 Classification and Results;476
56.6;5 Conclusion and Future Work;478
56.7;References;478
57;An Analysis of Rough Set-Based Application Tools in the Decision-Making Process;480
57.1;Abstract;480
57.2;1 Introduction;480
57.3;2 Related Works;481
57.3.1;2.1 Rough Set Theory in Brief;481
57.3.2;2.2 Existing Researches Related to the Rough Set Theory;482
57.4;3 Experimental Work;483
57.5;4 Discussion of Results;484
57.6;5 Conclusion;486
57.7;Acknowledgments;486
57.8;References;487
58;Differential Evolution Based Special Protection and Control Scheme for Contingency Monitoring of Transmission Line Overloading;488
58.1;Abstract;488
58.2;1 Introduction;488
58.3;2 Background of Study;489
58.3.1;2.1 Generation Rescheduling;489
58.4;3 Methodology;490
58.4.1;3.1 Mathematical Formulation of the DE-Based SPCS Scheme;490
58.4.2;3.2 Objective Function;491
58.4.3;3.3 Severity Index (SI);491
58.5;4 Overview of Differential Evolution in SPCS Perspective;493
58.5.1;4.1 Initialization;493
58.5.2;4.2 Mutation;494
58.5.3;4.3 Crossover;494
58.5.4;4.4 Selection;495
58.6;5 Results and Analysis;495
58.6.1;5.1 System Contingency Analysis;495
58.6.2;5.2 The Proposed DE Based Algorithm;496
58.7;6 Conclusion;499
58.8;Acknowledgement;499
58.9;References;499
59;An Implementation of Metaheuristic Algorithms in Business Intelligence Focusing on Higher Education Case Study;501
59.1;Abstract;501
59.2;1 Introduction;501
59.3;2 Proposed Business Intelligence Process;502
59.4;3 Higher Education Case Study;503
59.5;4 Metaheuristic Algorithm;504
59.5.1;4.1 Genetic Algorithm;504
59.5.2;4.2 Particle Swarm Optimization (PSO);505
59.5.3;4.3 Ant Colony Optimization (ACO);505
59.6;5 Implementation of Metaheuristic Algorithms and Results;506
59.7;6 Conclusion;507
59.8;Acknowledgments;507
59.9;References;508
60;Design and Control of Online Battery Energy Storage System Using Programmable Logic Controller;509
60.1;Abstract;509
60.2;1 Introduction;509
60.3;2 Methodology of Controller Design;511
60.3.1;2.1 The Online Battery Energy Storage System Design;511
60.3.1.1;2.1.1 Determining the Battery Pack Capacity;511
60.3.1.2;2.1.2 Selection of Inverter, Rectifier and Sensors;512
60.3.2;2.2 PLC Programming;513
60.3.3;2.3 Measurement Data and Acquisition Systems;513
60.4;3 Monitoring and Simulation of the Online BESS;514
60.4.1;3.1 BESS Under Safe Operating Conditions;514
60.4.2;3.2 BESS Under Unsafe Operating Conditions;516
60.5;4 Conclusion;517
60.6;References;517
61;Test Cases Minimization Strategy Based on Flower Pollination Algorithm;518
61.1;Abstract;518
61.2;1 Introduction;518
61.3;2 Test Cases Generation Based on Flower Pollination Algorithm (TGFP);519
61.4;3 Experiments and Evaluation;520
61.5;4 Conclusion;523
61.6;Acknowledgments;523
61.7;References;524
62;Predicting Global Solar Radiation in Nigeria Using Adaptive Neuro-Fuzzy Approach;526
62.1;Abstract;526
62.2;1 Introduction;526
62.3;2 Materials and Method;527
62.3.1;2.1 Study Location;527
62.3.2;2.2 Neuro Fuzzy Computing;528
62.3.2.1;2.2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS);528
62.4;3 Model Performance Evaluation;530
62.5;4 Results and Discussion;530
62.5.1;4.1 Model Analysis;530
62.5.2;4.2 Model Validation;532
62.6;5 Conclusion;533
62.7;Acknowledgement;533
62.8;References;533
63;A Novel Hybrid Bird Mating Optimizer with Differential Evolution for Engineering Design Optimization Problems;535
63.1;Abstract;535
63.2;1 Introduction;535
63.3;2 Bird Mating Optimizer BMO;536
63.4;3 Differential Evolution DE;538
63.5;4 Bird Mating Optimizer with Differential Evolution BMO-dE;540
63.6;5 Constraints Handling;540
63.7;6 Engineering Design Optimization Problems;541
63.7.1;6.1 Design of Pressure Vessel;541
63.7.2;6.2 Design of Tension/Compression Spring;542
63.8;7 Experimental Results and Discussion;543
63.9;8 Conclusions and Recommendations for Future Works;545
63.9.1;8.1 Conclusions;545
63.9.2;8.2 Recommendations for Future Works;546
63.10;References;546
64;Forecasting Crude Oil Prices Using Wavelet ARIMA Model Approach;548
64.1;Abstract;548
64.2;1 Introduction;548
64.3;2 Methodology;550
64.3.1;2.1 Crude Oil Spot Prices Dataset;550
64.3.2;2.2 Autoregressive Integrated Moving Average;550
64.3.3;2.3 Wavelet Transform;551
64.3.4;2.4 Wavelet ARIMA Combination Approach;552
64.3.5;2.5 Effectiveness Evaluation;552
64.4;3 Result and Discussion;553
64.4.1;3.1 ARIMA Model Construction;553
64.4.2;3.2 Wavelet ARIMA Combination Implementation;555
64.4.3;3.3 Effectiveness Evaluation Result;555
64.5;4 Conclusion;556
64.6;Acknowledgments;556
64.7;References;556
65;The Classification of Urban Growth Pattern Using Topological Relation Border Length Algorithm: An Experimental Study;558
65.1;Abstract;558
65.2;1 Introduction;558
65.3;2 Materials and Methods;560
65.3.1;2.1 Data Collection;560
65.3.2;2.2 Image Pre-processing;560
65.3.3;2.3 Urban Growth Pattern Classification Using Existing Topological Relation Border Length Algorithm;561
65.3.4;2.4 Urban Growth Pattern Classification Using Improved Topological Relation Border Length Algorithm;561
65.4;3 Results and Discussion;564
65.5;4 Conclusion;565
65.6;References;565
66;CMARPGA: Classification Based on Multiple Association Rules Using Parallel Genetic Algorithm Pruned Decision Tree;567
66.1;Abstract;567
66.2;1 Introduction;567
66.3;2 General Ideas of AC;568
66.4;3 The Proposed Technique;569
66.5;4 Experimental Setting;570
66.6;5 Experimental Results and Performance Analysis;570
66.7;6 Conclusion;572
66.8;References;573
67;Modified Cuckoo Search Algorithm for Solving Global Optimization Problems;574
67.1;Abstract;574
67.2;1 Introduction;574
67.3;2 Cuckoo Search Algorithm;576
67.3.1;2.1 The Procedure of Basic Cuckoo Search Algorithm;577
67.3.2;2.2 Tournament Selection Schemes;578
67.3.3;2.3 Modified Cuckoo Search Algorithm;579
67.4;3 Experiments;579
67.4.1;3.1 Benchmark Functions;579
67.4.2;3.2 Experimental Results and Algorithms Settings;580
67.5;4 Conclusion and Future Works;582
67.6;References;582
68;A New Hybrid K-Means Evolving Spiking Neural Network Model Based on Differential Evolution;584
68.1;Abstract;584
68.2;1 Introduction;584
68.3;2 Related Work;585
68.3.1;2.1 K-Means;585
68.3.2;2.2 ESNN;586
68.3.3;2.3 Differential Evolution;588
68.4;3 The Proposed Method K-DESNN;589
68.5;4 Experimental Results and Discussion;592
68.6;5 Conclusion;593
68.7;References;593
69;Reliable Health Informatics;597
70;Local Search Based Enhanced Multi-objective Genetic Algorithm of Training Backpropagation Neural Network for Breast Cancer Diagnosis;598
70.1;Abstract;598
70.2;1 Introduction;598
70.3;2 The Proposed Method;600
70.4;3 Dataset;600
70.5;4 Experimental Study;601
70.5.1;4.1 Experimental Settings;601
70.6;5 Results and Discussion;602
70.7;6 Conclusion;604
70.8;References;604
71;Optimization Health Care Resources in Sensor Network Using Fuzzy Logic Controller;606
71.1;Abstract;606
71.2;1 Introduction;606
71.3;2 Health Care System;607
71.4;3 Proposed Method;609
71.5;4 Test System;610
71.5.1;4.1 Network Topology;610
71.5.2;4.2 IEEE 802.15.6 Protocol Stack;610
71.6;5 Simulation Results;611
71.7;6 Conclusion;614
71.8;Acknowledgements;614
71.9;References;614
72;Towards Improving the Healthcare Services in Least Developed Countries: A Case of Health Needs Assessment for Telehealth in Yemen;616
72.1;Abstract;616
72.2;1 Introduction;616
72.3;2 Literature Review;618
72.4;3 Methodology;619
72.4.1;3.1 Document;619
72.4.2;3.2 Observation;619
72.5;4 Analysis and Findings;620
72.5.1;4.1 Document Analysis and Finding;621
72.5.2;4.2 Observation Analysis and Finding;621
72.6;5 Discussion;623
72.7;6 Conclusion;624
72.8;References;625
73;User Requirements for Prediabetes Self-care Application: A Healthcare Professional Perspective;627
73.1;Abstract;627
73.2;1 Introduction;627
73.2.1;1.1 Background;628
73.2.2;1.2 Research Problem Statement and Contributions;628
73.3;2 Methodology;629
73.4;3 Results;630
73.4.1;3.1 Lifestyle and Self-monitoring;631
73.4.2;3.2 Education and Awareness;631
73.4.3;3.3 Motivation and Commitment;632
73.4.4;3.4 Attitude;632
73.4.5;3.5 Social Support and Coaching;633
73.4.6;3.6 Technology;633
73.5;4 Discussion;634
73.6;5 Conclusion and Future Work;635
73.7;Acknowledgements;636
73.8;References;636
74;Understanding Health Professionals’ Intention to Use Telehealth in Yemen: Using the DeLone and McLean IS Success Model;638
74.1;Abstract;638
74.2;1 Introduction;638
74.3;2 Literatures Review;639
74.3.1;2.1 DeLone and McLean IS Success Model;640
74.4;3 The Research Model;641
74.4.1;3.1 The Dimensions of the Research Model and Hypotheses;641
74.5;4 Methodology;643
74.6;5 Analysis and Findings;643
74.6.1;5.1 Response Rate;643
74.6.2;5.2 Data Screening;643
74.6.3;5.3 Normality and Reliability;643
74.6.4;5.4 Descriptive Analysis for Respondents;644
74.6.5;5.5 Pearson Correlation Result;645
74.7;6 Discussion;646
74.8;7 Conclusion;646
74.9;References;647
75;Reliable Cloud Computing Environment;650
76;Quality of Service (QoS) Task Scheduling Algorithm with Taguchi Orthogonal Approach for Cloud Computing Environment;651
76.1;Abstract;651
76.2;1 Introduction;651
76.3;2 Related Works;652
76.4;3 Problem Formulation and QoS Scheduling Model;653
76.5;4 The Multi-objective Task Scheduling Algorithm;654
76.5.1;4.1 The Proposed Dynamic Multi-Objective Orthogonal Taguchi Cat Algorithm (DMOOTC);654
76.6;5 Simulation and Results;656
76.7;6 Discussion;657
76.8;7 Conclusion;658
76.9;References;658
77;A Fuzzy Logic Based Risk Assessment Approach for Evaluating and Prioritizing Risks in Cloud Computing Environment;660
77.1;Abstract;660
77.2;1 Introduction;660
77.3;2 Related Work;661
77.4;3 Research Method;662
77.5;4 Assessing Risk;662
77.6;5 Fuzzy Logic;663
77.6.1;5.1 Constructing Membership Functions;663
77.6.2;5.2 Designing Inference Based on the Set of Rules;665
77.6.3;5.3 Fuzzy Set Operation;665
77.6.4;5.4 Obtaining the Final Result by Defuzzification;666
77.7;6 Result and Discussion;667
77.8;7 Conclusion;668
77.9;References;668
78;Resolve Resource Contention for Multi-tier Cloud Service Using Butterfly Optimization Algorithm in Cloud Environment;670
78.1;Abstract;670
78.2;1 Introduction;670
78.3;2 Problem Statement;671
78.4;3 Related Work;671
78.5;4 The Resource Optimization and Provisioning Framework;672
78.5.1;4.1 Overview of ROP Framework;672
78.5.2;4.2 Design of RO Module;673
78.6;5 Experimental Setup;674
78.7;6 Results and Discussion;675
78.7.1;6.1 Best Service’s Configurations;675
78.7.2;6.2 Convergence Rate;676
78.8;7 Conclusion;677
78.9;References;677
79;Digital Forensic Challenges in the Cloud Computing Environment;679
79.1;Abstract;679
79.2;1 Introduction;679
79.3;2 Cloud Computing Forensics Challenges;680
79.4;3 Conclusions;685
79.5;Acknowledgments;685
79.6;References;685
80;E-Learning Acceptance Models;687
81;Acceptance Model of Social Media for Informal Learning;688
81.1;Abstract;688
81.2;1 Introduction;688
81.3;2 Theoretical Background;689
81.4;3 Development of Theoretical Model;689
81.4.1;3.1 Perceived Usefulness (PU);690
81.4.2;3.2 Perceived Ease of Use (PEOU);691
81.4.3;3.3 Students Engagement;691
81.4.4;3.4 Collaborative Learning;691
81.4.5;3.5 Interactivity;691
81.4.6;3.6 Experience;692
81.4.7;3.7 Culture;692
81.4.8;3.8 Subjective Norm;692
81.4.9;3.9 Image;693
81.4.10;3.10 Self-efficacy;693
81.4.11;3.11 Perceived Enjoyment;693
81.4.12;3.12 Intention;693
81.5;4 Discussion and Conclusion;694
81.6;References;694
82;Critical Factors to Learning Management System Acceptance and Satisfaction in a Blended Learning Environment;697
82.1;Abstract;697
82.2;1 Introduction;697
82.3;2 Conceptual Model and Research Hypotheses Development;698
82.3.1;2.1 Technology Experiences;699
82.3.2;2.2 System Quality;699
82.3.3;2.3 Information Quality;700
82.3.4;2.4 Service Quality;700
82.3.5;2.5 Students’ Acceptance;700
82.3.6;2.6 Students’ Satisfaction;701
82.4;3 Methodology;701
82.5;4 Data Analysis and Results;701
82.5.1;4.1 Structural Equation Modeling (SEM);701
82.5.1.1;4.1.1 Assessment of the Measurement Model;702
82.5.1.2;4.1.2 Assessment of the Structural Model;704
82.6;5 Discussion and Conclusion;705
82.7;References;706
83;End-User Perspectives on Effectiveness of Learning Performance Through Massive Open Online Course (MOOCs);708
83.1;Abstract;708
83.2;1 Introduction;708
83.3;2 Literature Review;709
83.4;3 Research Model and Hypotheses;709
83.4.1;3.1 Readiness (RE);710
83.4.2;3.2 Perceived Ease of Use (PEU);710
83.4.3;3.3 Perceived Usefulness (PU);710
83.4.4;3.4 Perceived Enjoyment (PE);710
83.4.5;3.5 Attitude (AT);710
83.4.6;3.6 Continuance of use of MOOCs (CI);711
83.4.7;3.7 Student Satisfaction and Effectiveness;711
83.5;4 Research Method;711
83.5.1;4.1 Data Collection;711
83.5.2;4.2 Data Analysis;711
83.6;5 Measurement Model Analysis;712
83.7;6 Conclusion;715
83.8;References;715
84;A Reflective Practice of Using Digital Storytelling During Teaching Practicum;717
84.1;Abstract;717
84.2;1 Introduction;717
84.3;2 Literature Review;717
84.4;3 Research Question;719
84.5;4 Methodology;719
84.6;5 Research Participants;719
84.7;6 Research Procedure;719
84.8;7 Findings and Discussions;721
84.8.1;7.1 Enhanced Understanding of Pedagogical Content Knowledge;721
84.8.2;7.2 Improved Teaching Practice;722
84.8.3;7.3 Professional Development;723
84.9;8 Conclusion;723
84.10;References;723
85;Recent Trends on Knowledge Management;725
86;The Role of Knowledge Sharing in Business Incubators Performance;726
86.1;Abstract;726
86.2;1 Introduction;726
86.3;2 Knowledge, Start-Ups and BIs;727
86.3.1;2.1 Networks as Channels;728
86.3.2;2.2 Knowledge Sharing and Performance;728
86.4;3 Method and Data;729
86.4.1;3.1 Measurement Model Results;729
86.4.2;3.2 Structural Model Results;730
86.5;4 Discussion;731
86.6;5 Conclusion;731
86.7;References;732
87;Knowledge Creation Process Within Group Problem Solving Among Students in Academic Institutions;735
87.1;Abstract;735
87.2;1 Introduction;735
87.3;2 Literature Review;736
87.4;3 Methodology;737
87.4.1;3.1 Data Analysis;738
87.4.2;3.2 Research Findings;739
87.5;4 Conclusion;742
87.6;Acknowledgment;742
87.7;References;742
88;Security in the Cyber World;744
89;Blockchain Security Hole: Issues and Solutions;745
89.1;Abstract;745
89.2;1 Introduction;745
89.3;2 Current Applications;746
89.3.1;2.1 Digital Payments (Cryptocurrencies);746
89.3.2;2.2 Smart Contracts;747
89.3.3;2.3 Database and Record Management;747
89.3.4;2.4 Content Distribution;748
89.4;3 Security Issues and Challenges;749
89.4.1;3.1 Security Issues;749
89.4.2;3.2 Other Challenges;749
89.5;4 Solutions;750
89.5.1;4.1 Current Solutions;750
89.6;5 Conclusions;751
89.7;Acknowledgement;751
89.8;References;752
90;A Robust DCT Based Technique for Image Watermarking Against Cropping Attacks;753
90.1;Abstract;753
90.2;1 Introduction;753
90.3;2 Review of DCT;754
90.4;3 Proposed Watermarking Scheme;755
90.4.1;3.1 Embedding Process;755
90.4.2;3.2 Extracting Process;759
90.5;4 Experiment Result;760
90.6;5 Performance Comparison with Other Methods;762
90.7;6 Conclusion;763
90.8;References;763
91;A 0-Day Aware Crypto-Ransomware Early Behavioral Detection Framework;764
91.1;Abstract;764
91.2;1 Introduction;764
91.3;2 Related Work;766
91.4;3 The Methods;766
91.5;4 The Proposed Framework;767
91.6;5 Results and Discussion;768
91.6.1;5.1 Pre-processing Module;768
91.6.2;5.2 Features Engineering Module;768
91.6.3;5.3 Detection Module;770
91.7;6 Conclusion and Future Work;770
91.8;References;770
92;SBRT: API Signature Behaviour Based Representation Technique for Improving Metamorphic Malware Detection;773
92.1;Abstract;773
92.2;1 Introduction;773
92.3;2 Related Works;774
92.3.1;2.1 Research Techniques for a Malware Detection System;774
92.4;3 Proposed Research’s Framework and Methodology;777
92.4.1;3.1 General Structure of Two Phases of the Proposed Research Framework;777
92.4.2;3.2 Phases Representing the Flow of the Whole Process;779
92.5;4 Analyses of Experimental Results;780
92.6;5 Conclusions;781
92.7;References;781
93;Society and Information Technology;784
94;Dimensions for Productive Ageing;785
94.1;Abstract;785
94.2;1 Introduction;785
94.3;2 Methodology;786
94.4;3 Findings on Productive Ageing Dimensions;787
94.4.1;3.1 Activities of Dimensions for Productive Ageing;790
94.5;4 Conclusion;791
94.6;References;791
95;Digital Games Acceptance in Malaysia;793
95.1;Abstract;793
95.2;1 Introduction;793
95.3;2 Literature Review;794
95.4;3 Research Methodology;795
95.4.1;3.1 The Sample and Administering the Survey;795
95.4.2;3.2 Data Analysis Procedures;797
95.5;4 Results and Discussions;797
95.6;5 Conclusions;798
95.7;References;799
96;Rising Ageing Population: A Preliminary Study of Malaysian Older People Expectations in Information and Communication Technology;800
96.1;Abstract;800
96.2;1 Introduction;800
96.3;2 Method;801
96.3.1;2.1 Discussion;802
96.3.2;2.2 Survey;802
96.4;3 ICT Importance and Challenges to Older People;802
96.5;4 Mobile Device Usage;804
96.6;5 Conclusion;806
96.7;Acknowledgments;807
96.8;References;807
97;Online Shopping Inventory Issues and Its Impact on Shopping Behavior: Customer View;808
97.1;Abstract;808
97.2;1 Introduction;808
97.3;2 Methodology;810
97.3.1;2.1 Survey Objective;810
97.4;3 Results Analysis and Discussions;811
97.4.1;3.1 Correlation Analysis;812
97.4.2;3.2 Comments Analysis;813
97.5;4 Conclusion;813
97.6;A Appendix;814
97.7;References;815
98;The DeLone–McLean Information System Success Model for Electronic Records Management System Adoption in Higher Professional Education Institutions of Yemen;816
98.1;Abstract;816
98.2;1 Introduction;816
98.3;2 Previous Works on Electronic Records Management System Technical Factors;817
98.3.1;2.1 System Quality;818
98.3.2;2.2 Information Quality;818
98.3.3;2.3 Service Quality;819
98.3.4;2.4 Behavioral Intention/Intention to Adopt ERMS;819
98.3.5;2.5 Decision Making Process;820
98.4;3 ERMS Adoption Model for Supporting Decision Making Process;820
98.5;4 Methodology;821
98.6;5 Findings and Discussions;822
98.7;6 Conclusion and Recommendations;824
98.8;References;825
99;Users’ Verification of Information System Curriculum Design Model;828
99.1;Abstract;828
99.2;1 Introduction;828
99.2.1;1.1 Information Systems Model;829
99.2.2;1.2 Definition of Curriculum Design;829
99.3;2 Methodology;831
99.4;3 Results and Discussion;831
99.4.1;3.1 The Results;831
99.4.2;3.2 Discussion;834
99.5;4 Conclusions;834
99.6;References;835
100;Understanding NUI Among Children: A Usability Study on Touch-Form and Free-Form Gesture-Based Interaction;836
100.1;Abstract;836
100.2;1 Introduction;836
100.3;2 Related Work;837
100.4;3 User Study;838
100.4.1;3.1 Method and Materials;838
100.4.2;3.2 Tasks;839
100.4.3;3.3 Preliminary State and Training Session;840
100.4.4;3.4 Data Collection;841
100.5;4 Result;841
100.6;5 Discussion and Recommendation;843
100.7;References;844
101;Influence Maximization Towards Target Users on Social Networks for Information Diffusion;846
101.1;Abstract;846
101.2;1 Introduction;846
101.3;2 Related Works;847
101.4;3 Problem Formulation;848
101.5;4 Methodology;849
101.6;5 Algorithms;849
101.7;6 Experiment;850
101.8;7 Result and Discussion;851
101.9;8 Conclusion;853
101.10;References;854
102;Exploring Elements and Factors in Social Content Management for ICT Service Innovation;855
102.1;Abstract;855
102.2;1 Introduction;855
102.3;2 Background;856
102.3.1;2.1 Evolution of Social Content Management;856
102.3.2;2.2 Elements Affecting Social Content Management;856
102.4;3 Method;857
102.5;4 Finding and Analysis;857
102.5.1;4.1 Strategy;858
102.5.2;4.2 People;858
102.5.3;4.3 Content Lifecycle;858
102.5.4;4.4 Technology;859
102.5.5;4.5 Governance;859
102.5.6;4.6 Strategic Managerial Aspect;859
102.6;5 Conclusion;860
102.7;Acknowledgement;860
102.8;References;860
103;Recent Trends on Software Engineering;864
104;Situational Requirement Engineering in Global Software Development;865
104.1;Abstract;865
104.2;1 Introduction;865
104.3;2 Literature Review;866
104.3.1;2.1 Background of the Research;866
104.3.2;2.2 Review of Related Research;867
104.3.3;2.3 Review of the Methodologies;870
104.3.4;2.4 Review of Situational Context;871
104.4;3 Discussion;872
104.4.1;3.1 Research Directions;872
104.5;4 Conclusion;874
104.6;References;874
105;Intellectual Property Challenges in the Crowdsourced Software Engineering: An Analysis of Crowdsourcing Platforms;877
105.1;Abstract;877
105.2;1 Introduction;877
105.3;2 Related Work;878
105.4;3 Methods;879
105.5;4 Results and Discussion;880
105.5.1;4.1 CSE Platforms;880
105.5.2;4.2 Challenges of IP Ownership Rights in CSE Platforms;880
105.6;5 Conclusion and Future Work;883
105.7;References;883
106;A Review of Advances in Extreme Learning Machine Techniques and Its Applications;887
106.1;Abstract;887
106.2;1 Introduction;887
106.3;2 Classical Extreme Learning Machines;888
106.4;3 Research Method;889
106.4.1;3.1 Research Questions;889
106.4.2;3.2 Research Strategy;889
106.4.3;3.3 Search Based on Strings and Scopes;890
106.4.4;3.4 Analysis of Search Result;891
106.5;4 Results and Discussion;893
106.5.1;4.1 ELM Techniques;893
106.5.2;4.2 Major Applications of ELM;893
106.5.3;4.3 Strength and Weaknesses of ELM;894
106.6;5 Conclusion;895
106.7;Acknowledgements;895
106.8;References;895
107;A Review on Meta-Heuristic Search Techniques for Automated Test Data Generation: Applicability Towards Improving Automatic Programming Assessment;898
107.1;Abstract;898
107.2;1 Introduction;899
107.3;2 Methodology;900
107.3.1;2.1 Planning the Review;900
107.3.2;2.2 Conducting the Review;900
107.3.3;2.3 Reporting the Review;901
107.4;3 Analysis and Results;902
107.4.1;3.1 Analysis of Primary Study;902
107.4.2;3.2 Publication Year;902
107.5;4 Conclusion and Future Work;906
107.6;Acknowledgements;907
107.7;References;907
108;Predicting Software Reliability with a Novel Neural Network Approach;909
108.1;Abstract;909
108.2;1 Introduction;909
108.3;2 Software Reliability Concepts;911
108.4;3 ICA-MLP Software Reliability Prediction Model;912
108.4.1;3.1 ICA-MLP Software Reliability Prediction Model;913
108.4.2;3.2 ICA-MLP Experimental Results;913
108.4.2.1;3.2.1 Experimental Results of Comparison;915
108.5;4 Conclusion;917
108.6;Acknowledgments;917
108.7;References;917
109;Performance Analysis of OpenMP Scheduling Type on Embarrassingly Parallel Matrix Multiplication Algorithm;919
109.1;Abstract;919
109.2;1 Introduction;919
109.3;2 Related Work;920
109.4;3 Methodology;921
109.4.1;3.1 Parallelizing Matrix Multiplication Algorithm;922
109.4.2;3.2 Measuring Execution Time;922
109.4.3;3.3 Experimental Platform;923
109.4.4;3.4 Parallel Performance Metrics;923
109.5;4 Results and Discussion;924
109.6;5 Conclusions and Future Work;926
109.7;Acknowledgments;926
109.8;References;927
110;Author Index;928



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.