E-Book, Englisch, 580 Seiten
Salem Structure Formation in Polymeric Fibers
1. Auflage 2018
ISBN: 978-3-446-45680-8
Verlag: Carl Hanser
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 580 Seiten
ISBN: 978-3-446-45680-8
Verlag: Carl Hanser
Format: PDF
Kopierschutz: 1 - PDF Watermark
The book will be a primary resource for all scientists and engineers involved in the research and practice of fiber formation and to students taking courses in polymer physics, polymer engineering, fiber science, and chemical engineering. It should also be of value to those interested in the general phenomena of polymer deformation, orientation, and structure development.
Contents
· Variations on a Theme of Uniaxial Orientation
· Structure Formation During Melt Spinning
· Advances in the Control of Spinline Dynamics for Enhanced Properties
· Structure Formation During Drawing of Flexible Chain Polymers
· Basic Aspects of Solution(Gel)-Spinning and Ultra-Drawing of PE-UHMW
· Electrospinning and the Formation of Nanofibers
· Fibers from Liquid Crystalline Polymers
· Solvent Spun Cellulose Fibers
· Carbon Fibers
· Fibers from Electrically Conductive Polymers
· Fibers from Polymer Blends and Copolymers
· Thermomechanical Processing: Structure and Properties
· Microstructure Characterization
· Fiber Formation and the Science of Complexity
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Textilverarbeitung und Faserverarbeitung
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Polymerwerkstoffe
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Kunststoffe und Polymere
Weitere Infos & Material
1;Contributors;7
2;Contents;9
3;Preface;18
4;1 Variations on a Theme of Uniaxial Orientation: Introductory Remarks on the Past, Present and Future of Fiber Formation;20
5;2 Structure Formation During Melt Spinning;24
5.1;2.1 Concepts and Theories;26
5.1.1;2.1.1 Introduction;26
5.1.2;2.1.2 An Engineering Analysis of the Process;28
5.2;2.2 Experimental Observations and Discussion;48
5.2.1;2.2.1 Polyolefins;48
5.2.2;2.2.2 Polyesters;71
5.2.3;2.2.3. Polyamides;86
5.2.4;2.2.4 Other Homopolymers;94
5.2.5;2.2.5 Copolymers Developed for Specialty Applications;96
5.2.6;2.2.6 Polymer Blends and Bicomponent Fibers;102
5.3;2.3 Concluding Remarks;106
5.4;Acknowledgments;106
5.5;2.4 References;106
6;3 Advances in the Control of Spinline Dynamics for Enhanced Fiber Properties;114
6.1;3.1 Introduction;114
6.2;3.2 Moving Beyond Imposed Limits as Take-Up Speeds Increase;114
6.2.1;3.2.1 The Dominant Forces;114
6.2.2;3.2.2 Cooling and Crystallization;118
6.2.3;3.2.3 Transient Effects;120
6.3;3.3 Recent Development Efforts and Achievements;122
6.3.1;3.3.1 Theoretical Tensile Strengths and the Potential for Vast Improvements;122
6.3.2;3.3.2 The Ideal One-Step Spinning Process;122
6.3.3;3.3.3 Patented Advances in Fiber Melt Spinning;124
6.4;3.4 The Preferred Route to Judicious Control of Spinline Dynamics;128
6.4.1;3.4.1 Judicious Control via Radical Change;128
6.4.2;3.4.2 The Response of Spinline Dynamics;128
6.4.3;3.4.3 Unprecedented As-Spun Fiber Properties;130
6.4.4;3.4.4 The Concept of Extended Chains and Enhanced Molecular Connectivity;132
6.5;3.5 Potential Applications and Future Development;134
6.6;3.6 References;136
7;4 Draw-Induced Structure Development in Flexible-Chain Polymers;138
7.1;4.1 Introduction;138
7.2;4.2 Overview of Stress-Strain-Structure Relationships;140
7.2.1;4.2.1 Modes of Deformation;140
7.2.2;4.2.2 Constant Extension Rate Deformation;142
7.2.3;4.2.3 Constant Force Deformation;152
7.3;4.3 Orientation-Induced Crystallization;154
7.3.1;4.3.1 General Concepts;154
7.3.2;4.3.2 The Case of Poly(ethylene terephthalate);156
7.3.3;4.3.3 Other Polymers;170
7.4;4.4 Theory and Modeling;172
7.4.1;4.4.1 Stress-Strain-Orientation Behavior;172
7.4.2;4.4.2 Crystallization;181
7.4.3;4.4.3 Molecular Dynamics Simulations;182
7.5;4.5 Morphology;184
7.5.1;4.5.1 Range of Order;184
7.5.2;4.5.2 Three Phase Models;184
7.6;4.6 Structure-Property Relationships;186
7.6.1;4.6.1 Tensile Modulus, Strength, Yield, and Elongation at Break;188
7.6.2;4.6.2 Dimensional Stability;190
7.6.3;4.6.3 Penetrant Diffusion;190
7.7;4.7 High Performance Fibers;192
7.7.1;4.7.1 Apolar Polymers;192
7.7.2;4.7.2 Polar Polymers;194
7.8;4.8 References;198
8;5 Basic Aspects of Solution(Gel)-Spinning and Ultra-Drawing of Ultra-High Molecular Weight Polyethylene;205
8.1;5.1 Introduction;207
8.2;5.2 The Ultimate Stiffness and Strength of Flexible Polymers;208
8.2.1;5.2.1 The Ultimate Tensile Modulus;208
8.2.2;5.2.2 The Ultimate Tensile Strength;208
8.2.3;5.2.3 Infinite vs. Finite Chains;208
8.2.4;5.2.4 Chain Alignment, Orientation vs. Extension;210
8.3;5.3 Chain Orientation and Chain Extension;214
8.3.1;5.3.1 The Single Chain;214
8.3.2;5.3.2 An Ensemble of Chains;216
8.4;5.4 Drawing of Polyethylene in the Solid-State;218
8.4.1;5.4.1 Solid-State Drawing of Polyethylenes;218
8.4.2;5.4.2 Solution(Gel)-Crystallized Polyethylene;220
8.4.3;5.4.3 Solvent-Free Processing of UHME-PE; Nascent Reactor Powders;222
8.4.4;5.4.4 Modeling of the Drawing Behavior;230
8.4.5;5.4.5 Drawing Behavior of Other Polymer Systems;236
8.5;5.5 Properties of Polyethylene Fibers, 1-D vs. 3-D;238
8.5.1;5.5.1 Tensile Strength (1-D);238
8.5.2;5.5.2 Polyethylene Fibers in Composites (3-D);240
8.5.3;5.5.3 Miscellaneous Properties of UHMW-PE Fibers;240
8.6;5.6 Concluding Remarks;240
8.7;5. 7 List of Symbols and Abbreviations;242
8.8;5.8 References;242
9;6 Electrospinning and the Formation ofNanofibers;244
9.1;6.1 Introduction;245
9.2;6.2 Electrospinning Process;246
9.2.1;6.2.1 Jet Initiation and the Diameter of a Single Jet;248
9.2.2;6.2.2 Bending Instability and Elongation of the Jet;248
9.2.3;6.2.3 Diameter of Nanofibers;252
9.2.4;6.2.4 Observations of Electrospinning of Polyethylene oxide Solutions: Length ofthe Straight Segment, Flow Rate of the Solution, Current and Voltage;254
9.3;6.3 Nanofibers and Their Unique Properties;256
9.3.1;6.3.1 Beaded Nanofibers;256
9.3.2;6.3.2 Electrospun Poly (p-phenylene terephthalamide);256
9.3.3;6.3.3 Composites with Nanofiber Reinforcement;258
9.3.4;6.3.4 Elastomeric Poly(styrene-butadiene-styrene) Nanofibers, Phase Miscibility;260
9.3.5;6.3.5 Carbon Nanofibers;260
9.3.6;6.3.6 Nanofibers for Biomedical, Filtration, Agricultural, and Outer-Space Applications;264
9.4;6.4 Acknowledgements;264
9.5;6.5 References;264
10;7 Fibers from Liquid Crystalline Polymers;266
10.1;7.1 Introduction: Liquid Crystalline Phases;266
10.2;7.2 Rheology in Liquid Crystalline Polymers;268
10.3;7.3 Fibers from Liquid Crystalline Polymers;273
10.4;7.4 Structure Formation and Properties of Liquid Crystalline Polymer Fibers from the Lyotropic Liquid Crystalline State;276
10.4.1;7.4.1 Molecular Parameters, Fiber Spinning, and Heat Treatments;278
10.4.2;7.4.2 PPTA Fiber Structure, Morphology, and Properties;280
10.4.3;7.4.3 PBZT and PBO Fiber Structure, Morphology, and Properties;286
10.5;7.5 Structure Formation and Properties of Liquid Crystalline Polymer Fibers from the Isotropic Solution State;290
10.5.1;7.5.1 Molecular Parameters, Fiber Spinning, and Heat Treatments;292
10.5.2;7.5.2 Organo-Soluble Aromatic Polyimide Fiber Structure, Morphology,and Properties;294
10.5.3;7.5.3 Technora Fiber Structure, Morphology, and Properties;300
10.6;7.6 Structure Formation and Properties of Liquid Crystalline Polymer Fibers from the Thermotropic State;302
10.6.1;7.6.1 Molecular Parameters, Fiber Spinning, and Heat Treatments;302
10.6.2;7.6.2 HBA/PET Copolyester Fiber Structure, Morphology, and Properties;304
10.6.3;7.6.3 HBA/HNA Copolyester Fiber Structure, Morphology, and Properties;307
10.6.4;7.6.4 Ekonol® Copolyester Fiber Structure, Morphology, and Properties;308
10.7;7.7 Concluding Remarks;308
10.8;7.8 References;308
11;8 Solvent Spun Cellulose Fibers;316
11.1;8.1 Structure and Properties;316
11.1.1;8.1.1 Introduction;316
11.1.2;8.1.2 Cellulose Structure;316
11.2;8.2 Fiber Formation;320
11.2.1;8.2.1 Introduction;320
11.2.2;8.2.2 Liquid Crystalline State;326
11.2.3;8.2.3 Direct Dissolution of Cellulose;328
11.2.4;8.2.4 Fiber Extrusion and Properties;340
11.3;8.3 Concluding Remarks;344
11.4;8.4 References;344
12;9 Carbon Fibers;349
12.1;9.1 Formation and Structure;349
12.1.1;9.1.1 Introduction;349
12.1.2;9.1.2 Carbon Fibers from PAN Precursors;350
12.1.3;9.1.3 Carbon Fibers from Pitch Precursors;356
12.2;9.2 Structure and Properties;358
12.2.1;9.2.1 Tensile Modulus;358
12.2.2;9.2.2 Tensile and Compressive Strength;358
12.2.3;9.2.3 The Structure of Carbon Fibers;360
12.2.4;9.2.4 Failure Mechanisms;368
12.2.5;9.2.5 Disorder in Carbon Fibers;372
12.2.6;9.2.6 Structure-Property Relations;374
12.3;9.3 References;376
13;10 Fibers from Electrically Conductive Polymers;378
13.1;10.1 Introduction;378
13.1.1;10.1.1 Polymer Conductivity;380
13.1.2;10.1.2 Measurement of Polymer Conductivity;386
13.1.3;10.1.3 Processing of Conductive Polymers;388
13.1.4;10.1.4 Fiber Formation;392
13.2;10.2 Fiber Formation from Emeraldine Base Polyaniline;392
13.2.1;10.2.1 Solution Spinning of Emeraldine Base Fiber;396
13.2.2;10.2.2 PANI Fiber Properties;404
13.2.3;10.2.3 Viscoelastic Characterization of PANI Spin Dopes;406
13.2.4;10.2.4 Thermal Characteristics of LEB PANI Fibers;412
13.3;10.3 Conclusion;412
13.4;10.4 Future Trends;414
13.5;10.5 References;414
14;11 Fibers from Polymer Blends and Copolymers;416
14.1;11.1 Introduction;416
14.2;11.2 Polymer Blends;418
14.2.1;11.2.1 Introduction;418
14.2.2;11.2.2 Miscibility;418
14.2.3;11.2.3 Multi-Phase Blends;420
14.2.4;11.2.4 Blends of Thermoplastics and Thermotropic Liquid Crystalline Polymers;420
14.3;11.3 Bicomponent Fibers;422
14.4;11.4 Fibers from Polymer Blends;424
14.5;11.5 Thermoplastic Fibers Reinforced with Thermotropic Liquid Crystalline Polymers;426
14.5.1;11.5.1 Fibers Produced via Simultaneous Melting of Blend Components;426
14.5.2;11.5.2 Fibers Generated Using the Dual Extrusion Process;428
14.5.3;11.5.3 Post Processing of Fibers Generated Using the Dual Extrusion Process;437
14.6;11.6 Copolymers;438
14.7;11.7 Elastomeric Fibers;440
14.8;11.8 References;442
15;12 Thermomechanical Processing: Structure and Properties;444
15.1;12.1 Introduction;444
15.2;12.2 Commercial Practice*;446
15.2.1;12.2.1 General Comments;446
15.2.2;12.2.2 Consumer Textiles;446
15.2.3;12.2.3 Tire Cord and Other Industrial Applications;450
15.3;12.3 Phenomenology of Thermomechanical Treatments;452
15.3.1;12.3.1 Mechanical Behavior During Processing; Creation of Internal Stress; Heat-Setting;452
15.3.2;12.3.2 The Development of Orientation of the Crystalline and Amorphous Substituents;460
15.4;12.4 Fiber Structure;460
15.4.1;12.4.1 Basic Structure;460
15.4.2;12.4.2 Crystal Transformation During Heat-Treatment;462
15.4.3;12.4.3 The Oriented Mesophase;462
15.5;12.5 Kinetics of Structure Development During Heat-Treatment;464
15.5.1;12.5.1 Effect of Orientation on the Crystallization Rate;464
15.5.2;12.5.2 In Situ Studies;466
15.5.3;12.5.3 Treat and Quench Investigations;466
15.6;12.6 Some Final Remarks;472
15.7;12.7 References;474
16;13 Microstructure Characterization;476
16.1;13.1 Wide Angle X-Ray Diffraction Analysis of Fibers;476
16.1.1;13.1.1 Introduction;476
16.1.2;13.1.2 Degree of Crystallinity;478
16.1.3;13.1.3 Degree of Orientation;480
16.1.4;13.1.4 Crystallite Size;480
16.1.5;13.1.5 Crystal Structure Determination;482
16.1.6;13.1.6 Aperiodic Scatter from Fibers of Random Copolymers;484
16.1.7;13.1.7 Transesterification in Blends of Copoly(HBA/HNA);488
16.1.8;13.1.8 Non-Linearity and Distortions;490
16.1.9;13.1.9 References;492
16.2;13.2 Small-Angle Scattering;494
16.2.1;13.2.1 Introduction;494
16.2.2;13.2.2 Characteristics of SAS;496
16.2.3;13.2.3 Instrumentation;498
16.2.4;13.2.4 Data Analysis;499
16.2.5;13.2.5 Applications;504
16.2.6;13.2.6 Concluding Remark;511
16.2.7;13.2.7 References;511
16.3;13.3 Density, Birefringence, and Polarized Fluorescence;512
16.3.1;13.3.1 Crystallinity from Density;512
16.3.2;13.3.2 Molecular Orientation from Birefringence;514
16.3.3;13.3.3 Molecular Orientation from Polarized Fluorescence;516
16.3.4;13.3.4 References;524
16.4;13.4 Spectroscopic Methods: Infrared, Raman, and Nuclear Magnetic Resonance;526
16.4.1;13.4.1 Introduction;526
16.4.2;13.4.2 Infrared;528
16.4.3;13.4.3 Raman;532
16.4.4;13.4.4 Nuclear Magnetic Resonance;534
16.4.5;13.4.5 References;538
17;14 Fiber Formation and the Science of Complexity;540
17.1;14.1 Introduction;540
17.2;14.2 A Historical Account of Structural Complexity;542
17.2.1;14.2.1 The Early Fringed Micelle Models;542
17.2.2;14.2.2 The Common Working Model;548
17.2.3;14.2.3 Alternative Continuous Models;552
17.2.4;14.2.4 Other Complexities;554
17.3;14.3 The Science of Complexity;556
17.3.1;14.3.1 Far-from-Equilibrium;556
17.3.2;14.3.2 Characterizing Structure: Computer Graphics;556
17.3.3;14.3.3 Polymer Dynamics;558
17.3.4;14.3.4 Fractals;560
17.3.5;14.3.5 Kinetics of Nonhomogeneous Processes;560
17.3.6;14.3.6 Nonlinear Irreversible Thermodynamics;562
17.3.7;14.3.7 Chaos Theory;562
17.4;14.4 The Possible Role of Quantum Theory;564
17.4.1;14.4.1 Quantum Effects;564
17.4.2;14.4.2 Melt-Spun Fiber Formation;566
17.4.3;14.4.3 Clusters and Quantized Energy Levels;566
17.5;14.5 Conclusion: Scientific and Engineering Opportunity;568
17.6;14.6 References;570
18;Index;573
· Variations on a Theme of Uniaxial Orientation
· Structure Formation During Melt Spinning
· Advances in the Control of Spinline Dynamics for Enhanced Properties
· Structure Formation During Drawing of Flexible Chain Polymers
· Basic Aspects of Solution(Gel)-Spinning and Ultra-Drawing of PE-UHMW
· Electrospinning and the Formation of Nanofibers
· Fibers from Liquid Crystalline Polymers
· Solvent Spun Cellulose Fibers
· Carbon Fibers
· Fibers from Electrically Conductive Polymers
· Fibers from Polymer Blends and Copolymers
· Thermomechanical Processing: Structure and Properties
· Microstructure Characterization
· Fiber Formation and the Science of Complexity