E-Book, Englisch, Band Volume 67, 352 Seiten
Sariaslani Advances in Applied Microbiology
1. Auflage 2009
ISBN: 978-0-08-095103-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band Volume 67, 352 Seiten
Reihe: Advances in Applied Microbiology
ISBN: 978-0-08-095103-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology.
The series contains comprehensive reviews of the most current research in applied microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.
Eclectic volumes are supplemented by thematic volumes on various topics, including Archaea and sick building syndrome. Impact factor for 2007: 1.821.
* Contributions from leading authorities and industry experts
* Informs and updates on all the latest developments in the field
* Reference and guide for scientists and specialists involved in advancements in applied microbiology
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Applied Microbiology ;4
3;Copyright Page;5
4;Content ;6
5;Contributors;12
6;Chapter 1: Phage Evolution and Ecology;14
6.1;I. Introduction;15
6.2;II. Bacteriophage Types;17
6.3;III. Phage Ecology;19
6.3.1;A. Phage organismal and population ecology;21
6.3.2;B. Phage community ecology;21
6.3.3;C. Phage ecosystem ecology;21
6.4;IV. Phage Evolutionary Biology;22
6.4.1;A. Microevolution versus macroevolution;22
6.4.2;B. Fitness and natural selection;24
6.4.3;C. Mutation;26
6.4.4;D. Genetic drift;31
6.4.5;E. Migration (Introgression);31
6.4.6;F. Recombination;32
6.5;V. Phage Evolutionary Ecology;34
6.5.1;A. Life history evolution;34
6.5.2;B. Adsorption;35
6.5.3;C. Infection, prereproductive period;37
6.5.4;D. Infection, reproductive period;38
6.5.5;E. Burst;39
6.6;VI. Phage Genome Evolution;40
6.6.1;A. Horizontal gene transfer;40
6.6.2;B. Genomics and mosaicism;42
6.6.3;C. "All the world's a phage";47
6.7;VII. Concluding Remarks;48
6.8;References;48
7;Chapter 2: Nucleoid-Associated Proteins and Bacterial Physiology;60
7.1;I. Introduction;61
7.2;II. The Multifunctional Fis Protein;63
7.3;III. The Fis Protein and Bacterial Physiology;64
7.4;IV. The Characteristic Expression Pattern of Fis;65
7.5;V. Fis and the Global Transcription Pattern;68
7.6;VI. The H-NS Protein, a Universal Repressor;69
7.7;VII. Proteins HU and IHF;70
7.8;VIII. RpoS as a Regulatory Target of NAPs;71
7.9;IX. Perspective;72
7.10;Acknowledgments;72
7.11;References;72
8;Chapter 3: Biodegradation of Pharmaceutical and Personal Care Products;78
8.1;I. Introduction;79
8.2;II. What Are PPCPs?;80
8.3;III. Human Interactions With PPCPs;81
8.4;IV. Biological Transformation of PPCPs During Wastewater Treatment;85
8.5;V. Biological Transformation of PPCPs in The Environment;98
8.6;VI. Growth on PPCPs;101
8.7;VII. Pathways for the Degradation of Selected PPCPs;104
8.7.1;A. Octylphenol degradation by Sphingomonas sp. strain PWE1;104
8.7.2;B. Ibuprofen degradation by Sphingomonas sp. strain Ibu-2;107
8.7.3;C. Deet degradation by P. putida DTB;109
8.8;VIII. Conclusions;111
8.9;References;112
9;Chapter 4: Bioremediation of Cyanotoxins;122
9.1;I. Introduction;123
9.2;II. Hepatoxic Peptides-Microcystins and Nodularins;124
9.2.1;A. Persistence and biodegradation;125
9.2.2;B. Biodegrading bacteria;128
9.2.3;C. Characterization of MC-LR degradation pathway;130
9.2.4;D. Exploitation of microcystin-degrading bacteria;133
9.3;III. Other Toxins;135
9.3.1;A. Saxitoxins;135
9.3.2;B. Cylindrospermopsin;136
9.3.3;C. Anatoxin-a;138
9.4;IV. Conclusions;138
9.5;References;139
10;Chapter 5: Virulence in Cryptococcus Species;144
10.1;I. Cryptococcus and Cryptococcosis;145
10.1.1;A. C. neoformans;148
10.1.2;B. C. gattii;149
10.1.3;C. Other species;151
10.1.4;D. Cryptococcosis;151
10.1.5;E. Genome sequencing project;155
10.2;II. Virulence Factors;156
10.2.1;A. Capsule;156
10.2.2;B. Melanin;159
10.2.3;C. Ability to grow at physiological temperature;159
10.2.4;D. Degradative enzymes;160
10.2.5;E. Mating type;161
10.2.6;F. Phenotypic switching;162
10.2.7;G. The origin and maintenance of virulence factors;163
10.3;III. Signaling Pathways Regulating Pathogenicity;165
10.3.1;A. cAMP-PKA;165
10.3.2;B. MAP kinase pathway;166
10.3.3;C. Ras pathway and the Ca2+-calcineurin pathway;167
10.4;IV. Cryptococcus and the Host Response;168
10.4.1;A. Immunocompromised host;168
10.4.2;B. Immunocompetent host;174
10.4.3;C. Conclusion;178
10.5;V. Current Understanding on How Cryptococcus Crosses the Blood-Brain Barrier;178
10.6;VI. Animal Models;180
10.7;VII. Perspectives;182
10.8;References;183
11;Chapter 6: Molecular Networks in the Fungal Pathogen Candida albicans;204
11.1;I. Introduction;205
11.2;II. Ras1 Interrelated Networks;206
11.2.1;A. Mitogen-activated protein kinase signaling;206
11.2.2;B. Cyclic AMP-dependent PKA pathway;209
11.3;III. Carbon Dioxide Sensing;212
11.3.1;A. Adenylyl cyclase (Cyr1) senses environmental CO2;212
11.3.2;B. CO2 sensing: A role for carbonic anhydrase;213
11.4;IV. Quorum Sensing and its Effects on C. albicans Morphology;213
11.4.1;A. Farnesol exerts its effects through cAMP signaling cascades;214
11.4.2;B. Tup1p is involved in quorum sensing in C. albicans;216
11.4.3;C. Transcriptional analysis of quorum sensing in C. albicans;216
11.5;V. pH Regulation of Cell Morphology;217
11.6;VI. Other Pathways Affecting Morphology;218
11.7;VII. Conclusions;219
11.8;Acknowledgments;220
11.9;References;220
12;Chapter 7: Temperature Sensors of Eubacteria;226
12.1;I. Introduction;227
12.2;II. Thermosensors;228
12.2.1;A. Nucleoid modulators;228
12.2.2;B. RNA;229
12.2.3;C. Proteins;230
12.3;III. Responses to Sudden Changes in the Growth Temperature;231
12.3.1;A. The high temperature response;234
12.3.2;B. The heat shock response;234
12.3.3;C. The low temperature response;235
12.3.4;D. The cold shock response;236
12.4;IV. Sensors of the HTR;236
12.4.1;A. Nucleoid modulators as thermosensor;237
12.4.2;B. RNA as thermosensor;241
12.4.3;C. Proteins as thermosensor;244
12.5;V. Sensors of the HSR;246
12.5.1;A. Molecular chaperones as thermosensors;246
12.5.2;B. Proteases as thermosensors;249
12.6;VI. Sensors of the LTR;250
12.6.1;A. RNA as thermosensor;250
12.6.2;B. Proteins as thermosensors;252
12.7;VII. Sensors of the CSR;254
12.7.1;A. RNA as sensor;255
12.7.2;B. Proteins as sensor;256
12.8;VIII. The Thermotactic Response;256
12.9;Acknowledgment;258
12.10;References;258
13;Chapter 8: Deciphering Bacterial Flagellar Gene Regulatory Networks in the Genomic Era;270
13.1;I. Introduction;271
13.2;II. Master Regulators;274
13.2.1;A. FlhDC;275
13.2.2;B. CtrA;277
13.2.3;C. VisNR;279
13.2.4;D. sigma54-dependent master regulators;280
13.2.5;E. Other master regulators;284
13.3;III. RpoN (sigma54) Regulators;287
13.3.1;A. FlbD;287
13.3.2;B. FleR/FlrC;291
13.3.3;C. FlgR;292
13.3.4;D. FleT;293
13.4;IV. FliA (sigma28) and FlgM;293
13.4.1;A. SigD and other systems;295
13.5;V. Conclusions;297
13.6;References;297
14;Chapter 9: Genetic Tools to Study Gene Expression During Bacterial Pathogen Infection;310
14.1;I. Introduction;311
14.2;II. In Vivo Expression Technology;312
14.2.1;A. Selection by selection for complementation of auxotrophy in Salmonella;313
14.2.2;B. Antibiotic-based IVET selection for ivi genes;314
14.2.3;C. Recombinase-mediated IVET and analysis of Vibrio cholerae gene regulation;315
14.3;III. DFI: S. Typhimurium Genes Induced by Low-ph and Intracellular Growth Conditions In Vitro and In Vivo;319
14.4;IV. Repression of an Anti-Colonization Factor in V. Cholerae;321
14.5;V. Conclusion and Future Prospects;324
14.6;Acknowledgment;325
14.7;References;325
15;Index;328
16;Contents of Previous Volumes;336
17;Color Plate Section;348