E-Book, Englisch, Band Volume 90, 228 Seiten
Sariaslani Advances in Applied Microbiology
1. Auflage 2015
ISBN: 978-0-12-802473-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band Volume 90, 228 Seiten
Reihe: Advances in Applied Microbiology
ISBN: 978-0-12-802473-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
A compilation of up to date reviews of topics in biotechnology and medical field. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Advances in Applied Microbiology;2
3;Advances in Applied Microbiology
;4
4;Copyrights
;5
5;Contents;6
6;Contributors
;8
7;Sugar Catabolism in Aspergillus and Other Fungi Related to the Utilization of Plant Biomass;10
7.1;1. Introduction;11
7.2;2. Composition of Plant Biomass;11
7.3;3. Fungal Growth on Plant Biomass;14
7.4;4. Aspergillus as a Plant Biomass Degrader;14
7.4.1;4.1 The Genus Aspergillus;14
7.5;5. Fungal Sugar Catabolism;15
7.5.1;5.1 Catabolism of d-Glucose and d-Fructose through Glycolysis;15
7.5.2;5.2 Pentose Phosphate Pathway;18
7.5.3;5.3 Conversion of d-Xylose and l-Arabinose through the PCP;19
7.5.4;5.4 Catabolism of d-galactose;23
7.5.5;5.5 Catabolism of d-Mannose;26
7.5.6;5.6 Catabolism of l-Rhamnose;27
7.5.7;5.7 Catabolism of d-Galacturonic Acid;28
7.6;6. Conclusions;30
7.7;Acknowledgments;31
7.8;References;31
8;The Evolution of Fungicide Resistance;38
8.1;1. Introduction;39
8.2;2. Fungicide Resistance: The Evolutionary Context;40
8.3;3. Fungicide Use on Cereals in Europe;45
8.4;4. Mechanisms of Resistance to Single-Site Inhibitors;47
8.5;5. Case Histories;48
8.5.1;5.1 Eyespot of Cereals;48
8.5.1.1;5.1.1 Changes in Field Populations of the Cereal Eyespot Pathogens in Response to Fungicide Use;53
8.5.2;5.2 Septoria tritici Blotch of Wheat;56
8.5.2.1;5.2.1 Changes in CYP51;61
8.5.2.2;5.2.2 Additional Resistance Mechanisms to Azoles;63
8.5.2.3;5.2.3 SDHI Fungicides and Z. tritici;64
8.5.3;5.3 Powdery Mildew of Cereals, B. graminis;65
8.5.4;5.4 Fusarium Ear Blight;68
8.6;6. Predictability of Resistance Evolution;70
8.6.1;6.1 Mutagenesis and in vitro Selection;70
8.6.2;6.2 Fitness Costs;72
8.6.3;6.3 Parallel Evolution;73
8.6.4;6.4 Functional Constraints and Epistasis;75
8.7;7. Estimating Resistance Risk;78
8.8;8. Implications for Resistance Management;80
8.8.1;8.1 Resistance Diagnostics;80
8.8.2;8.2 Evaluating Management Strategies;81
8.8.3;8.3 The Impact of Genomics;83
8.9;9. Conclusions;84
8.10;Acknowledgments;85
8.11;References;85
9;Genetic Control of Asexual Development in Aspergillus fumigatus;102
9.1;1. Introduction;103
9.2;2. Central Regulatory Pathway of Conidiation;104
9.3;3. The Roles of the Velvet Regulators in Conidiation;106
9.4;4. FluG and FLBs Govern Upstream Activation of Conidiation;109
9.5;5. Heterotrimeric G-protein Signaling Indirectly Controls Conidiation;110
9.6;6. Light and Conidiation;112
9.7;7. Conclusions and Prospects;113
9.8;Acknowledgments;114
9.9;References;114
10;Escherichia coli ST131: The Quintessential Example of an International Multiresistant High-Risk Clone;118
10.1;1. Introduction;119
10.2;2. Extraintestinal Pathogenic E. coli;120
10.3;3. Expanded-Spectrum ß-Lactamases;122
10.3.1;3.1 CTX-M ß-Lactamases;123
10.3.2;3.2 AmpC ß-Lactamases or Cephalosporinases;125
10.3.3;3.3 NDM ß-Lactamases;126
10.4;4. OXA-48-like ß-Lactamases;128
10.5;5. International Multiresistant High-Risk Clones;129
10.6;6. Escherichia coli ST131;132
10.6.1;6.1 Initial Studies Pertaining to E. coli ST131;132
10.6.2;6.2 Plasmids Associated with E. coli ST131;136
10.6.3;6.3 Recent Developments Pertaining to ST131;138
10.6.3.1;6.3.1 Epidemiology and Clinical Issues;138
10.6.3.2;6.3.2 Population Biology;139
10.6.3.3;6.3.3 O16:H5 H41 Lineage;141
10.6.3.4;6.3.4 Virulence;142
10.6.3.5;6.3.5 ST131 and Carbapenemases;142
10.6.4;6.4 Does ST131 Qualify as an International Multiresistant High-Risk Clone?;143
10.6.4.1;6.4.1 Global Distribution;144
10.6.4.2;6.4.2 Association with Antimicrobial Resistance Mechanisms;144
10.6.4.3;6.4.3 Ability to Colonize Human Hosts;145
10.6.4.4;6.4.4 Effective Transmission among Hosts;145
10.6.4.5;6.4.5 Enhanced Pathogenicity and Fitness;146
10.6.4.6;6.4.6 Causing Severe and/or Recurrent Infections;146
10.7;7. Rapid Methods for the Detection of E. coli ST131;147
10.7.1;7.1 Multilocus Sequence Typing;147
10.7.2;7.2 Pulsed Field Gel Electrophoresis;148
10.7.3;7.3 Repetitive Sequence-Based PCR Typing;148
10.7.4;7.4 Polymerase Chain Reaction;149
10.7.5;7.5 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry;150
10.8;8. Summary;151
10.9;References;152
11;Colonization Factors of Enterotoxigenic Escherichia coli;164
11.1;1. Introduction;165
11.2;2. Pilus and Pilus-Related Colonization Factors;167
11.2.1;2.1 General Characteristics;167
11.2.1.1;2.1.1 Morphology and Composition;167
11.2.1.2;2.1.2 Adherence Function;170
11.2.1.3;2.1.3 Nomenclature;171
11.2.1.4;2.1.4 Genetics;172
11.2.2;2.2 Pili Assembled by the CU Pathway;172
11.2.2.1;2.2.1 CFs of the a-FUP Clade;175
11.2.2.2;2.2.2 CFs of the .2-FUP Clade;178
11.2.2.3;2.2.3 CFs of the .3-FUP Clade;178
11.2.2.4;2.2.4 CFs of the .-FUP Clade;180
11.2.2.5;2.2.5 Structure of CFs Assembled by the CU Pathway;181
11.2.3;2.3 Type IV pili;185
11.2.3.1;2.3.1 CFA/III and Longus;185
11.2.3.2;2.3.2 Structure of Type IV Pili in ETEC;187
11.3;3. Nonpilus Adhesins;189
11.3.1;3.1 Tia;189
11.3.2;3.2 EtpA;190
11.3.3;3.3 TibA;191
11.4;4. Regulation of Pilus Expression;192
11.4.1;4.1 AraC family Transcriptional Regulators;192
11.4.2;4.2 Phase Variation;195
11.5;5. Conclusions;196
11.6;References;197
12;Index;208
13;Contents of Previous Volumes
;216
Sugar Catabolism in Aspergillus and Other Fungi Related to the Utilization of Plant Biomass
1 Corresponding author: E-mail: r.devries@cbs.knaw.nl
Abstract
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.
Keywords
Aspergillus; Carbon catabolic enzymes; Central carbon metabolism; Plant polysaccharides utilization; Sugar catabolism
1. Introduction
2. Composition of Plant Biomass
Table 1
Composition of plant polysaccharides
| Type | Monomers |
| Cellulose | — | D-glucose |
| Hemicellulose | Xylan | D-xylose |
| Glucuronoxylan |
| Arabinoglucuronoxylan | D-xylose, L-arabinose |
| Arabinoxylan | D-xylose, L-arabinose |
| Galacto(gluco)mannan | D-glucose, D-mannose, D-galactose |
| Mannan/galactomannan | D-mannose, D-galactose |
| Glucuronomannan | D-mannose, D-glucoronic acid, D-galactose, L-arabinose |
| Xyloglucan | D-glucose, D-xylose, D-fructose, D-galactose |
| Glucan | D-glucose |
| Arabinogalactan | D-galactose, L-arabinose, D-glucuronic acid |
| Pectin | Homogalacturonan | D-galacturonic acid |
| Xylogalacturonan | D-galacturonic acid, D-xylose |
| Rhamnogalacturonan I | D-galacturonic acid, L-rhamnose, D-galactose, L-arabinose |
Based on Kowalczyk et al. (2014).




