E-Book, Englisch, 620 Seiten, eBook
Sarnak / Lax / Majda Selected Papers I
2005
ISBN: 978-0-387-28148-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 620 Seiten, eBook
ISBN: 978-0-387-28148-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Partial Differential Equations.- On the existence of Green’s Function.- Parabolic Equations.- On Cauchy’s Problem for Hyperbolic Equations and the Differentiability of Solutions of Elliptic Equations.- The Propagation of Discontinuities in Wave Motion.- Asymptotic Solutions of Oscillatory Initial Value Problems.- Development of Singularities of Solutions of Nonlinear Hyperbolic Partial Differential Equations.- On Stability for Difference Schemes; a Sharp Form of Gårding’s Inequality.- An Example of Huygens’ Principle.- A Simple One-dimensional Model for the Three-dimensional Vorticity Equation.- Commentary on Part I.- Difference Approximations to PDE.- Survey of the Stability of Linear Finite Difference Equations.- On the Stability of Difference Approximations to Solutions of Hyperbolic Equations With Variable Coefficients.- The Computation of Discontinuous Solutions of Linear Hyperbolic Equations.- Accuracy and Resolution in the Computation of Solutions of Linear and Nonlinear Equations.- Commentary on Part II.- Hyperbolic Systems of Conservation Laws.- Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation.- Hyperbolic Systems of Conservation Laws II.- Systems of Conservation Laws.- Difference Schemes for Hyperbolic Equations with High Order of Accuracy.- Shock Waves and Entropy.- Systems of Conservation Equations with a Convex Extension.- Positive Schemes for Solving Multi-Dimensional Hyperbolic Systems of Conservation Laws.- Commentary on Part III.- Integrable Systems.- Integrals of Nonlinear Equations of Evolution and Solitary Waves.- Periodic Solutions of the KdV Equation.- Almost Periodic Solutions of the KdV Equation.- The Small Dispersion Limit of the Korteweg-de Vries Equation. I.- The Small Dispersion Limit of the Korteweg-de Vries Equation. II.- The Small Dispersion Limit of the Korteweg-deVries Equation. III.- On Dispersive Difference Schemes. I.- Dispersive Approximations in Fluid Dynamics.- Commentary on Part IV.