E-Book, Englisch, Band 14286, 616 Seiten, eBook
Sellmann / Tierney Learning and Intelligent Optimization
1. Auflage 2023
ISBN: 978-3-031-44505-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
17th International Conference, LION 17, Nice, France, June 4–8, 2023, Revised Selected Papers
E-Book, Englisch, Band 14286, 616 Seiten, eBook
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-031-44505-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Anomaly Classification to Enable Self-Healing in Cyber Physical Systems using Process Mining.- Hyper-box Classification Model using Mathematical Programming.- A leak localization algorithm in water distribution networks using probabilistic leak representation and optimal transport distance.- Fast and Robust Constrained Optimization via Evolutionary and Quadratic Programming.- Bayesian Optimization for Function Compositions with Applications to Dynamic Pricing.- A Bayesian optimization algorithm for constrained simulation optimization problems with heteroscedastic noise.- Hierarchical Machine Unlearning.- Explaining the Behavior of Reinforcement Learning Agents using Explaining the Behavior of Reinforcement Learning Agents using.- Deep Randomized Networks for Fast Learning.- Generative models via Optimal Transport and Gaussian Processes.- Real-world streaming process discovery from low-level event data.- Robust Neural Network Approach to System Identification in the High-Noise Regime.-GPU for Monte Carlo Search.- Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation.- Heuristics selection with ML in CP Optimizer.- Model-based feature selection for neural networks: A mixed-integer programming approach.- An Error-Based Measure for Concept Drift Detection and Characterization.- Predict, Tune and Optimize for Data-Driven Shift Scheduling with Uncertain Demands.- On Learning When to Decompose Graphical Models.- Inverse Lighting with Differentiable Physically-Based Model.- Repositioning Fleet Vehicles: a Learning Pipeline.- Bayesian Decision Trees Inspired from Evolutionary Algorithms.- Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local Search.- Relational Graph Attention-based Deep Reinforcement Learning: An Application to Flexible Job Shop Scheduling with Sequence-dependent Setup Times.- Experimental Digital Twin for Job Shops with Transportation Agents.- Learning to Prune Electric Vehicle Routing Problems.- A matheuristic approach for electric bus fleet scheduling.- Class GP: Gaussian Process Modeling for Heterogeneous Functions.- Surrogate Membership for Inferred Metrics in Fairness Evaluation.- The BeMi Stardust: a Structured Ensemble of Binarized Neural Network.- Discovering explicit scale-up criteria in crisis response with decision mining.- Job Shop Scheduling via Deep Reinforcement Learning: a Sequence to Sequence approach.- Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph Neural Networks.- Multi-Task Predict-then-Optimize.- Integrating Hyperparameter Search into Model-Free AutoML with Context-Free Grammars.- Improving subtour elimination constraint generation in Branch-and-Cut algorithms for the TSP with Machine Learning.- Learn, Compare, Search: One Sawmill’s Search for the Best Cutting Patterns Across And/or Trees.- Dynamic Police Patrol Scheduling with Multi-Agent Reinforcement Learning.- Analysis of Heuristics for Vector Scheduling and Vector Bin Packing.- Unleashing the potentialof restart by detecting the search stagnation.