Senn / Sanguineti / Saudargiene | Artificial Neural Networks and Machine Learning. ICANN 2025 International Workshops and Special Sessions | Buch | 978-3-032-04551-5 | www.sack.de

Buch, Englisch, 250 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g

Reihe: Lecture Notes in Computer Science

Senn / Sanguineti / Saudargiene

Artificial Neural Networks and Machine Learning. ICANN 2025 International Workshops and Special Sessions

34th International Conference on Artificial Neural Networks, Kaunas, Lithuania, September 9-12, 2025, Proceedings, Part V
Erscheinungsjahr 2025
ISBN: 978-3-032-04551-5
Verlag: Springer

34th International Conference on Artificial Neural Networks, Kaunas, Lithuania, September 9-12, 2025, Proceedings, Part V

Buch, Englisch, 250 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-04551-5
Verlag: Springer


This book constitutes the refereed proceedings of 34th International Workshops which were held in conjunction with the 34th International Conference on Artificial Neural Networks and Machine Learning, ICANN 2025, held in Kaunas, Lithuania, September 9–12, 2025.   The 20 full papers and 8 abstracts included in this workshop volume were carefully reviewed and selected from 42 submissions. They were organized in the following sections: 2nd AI in Drug Discovery (AIDD) Workshop; Special Session: Neural Networks for Graphs and Beyond; Special Session: Neurorobotics;  3rd International Workshop on Reservoir Computing.
Senn / Sanguineti / Saudargiene Artificial Neural Networks and Machine Learning. ICANN 2025 International Workshops and Special Sessions jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- 2nd AI in Drug Discovery (AIDD) Workshop.
.- Early-stage Discovery in the Era of Hard-to-Drug Targets and Giga-scale Chemical Spaces.
.- Comparative Analysis of Chemical Structure String Representations for Neural Machine Translation.
.- ADMETrix: ADMET-Driven De Novo Molecular Generation.
.- Dimension-Augmented Anisotropy in Graph Neural Di!usion.
.- Uni-Mol Docking V2: Towards Realistic and Accurate Binding Pose Prediction.
.- MolEncoder: Improved Masked Language Modeling for Molecules.
.- Consensus Prediction of Chemical Reactions with OCHEM-R Platform.
.- Special Session: Neural Networks for Graphs and Beyond.
.- HeNCler: Node Clustering in Heterophilous Graphs via Learned Asymmetric Similarity.
.- Visualisation and Analysis of the Loss Landscape in Graph Neural Networks.
.- Preface: Special Session: Neurorobotics.
.- Pointing-Guided Target Estimation via Transformer-Based Attention.
.- Keypoint-based Di!usion for Robotic Motion Planning on the NICOL Robot.
.- Real-Time Syllable Recognition in LIBRAS Using Deep Learning for Human-Robot Interaction.
.- Generating and Customizing Robotic Arm Trajectories using Neural Networks.
.- Robotic Calibration Based of Haptic Feedback Improves Sim-to-Real Transfer.
.- Towards Bio-Inspired Robotic Trajectory Planning via Self-Supervised RNN.
.- 3rd International Workshop on Reservoir Computing.
.- Impact of Plasticity-Based Reservoir Adaptation on Spectral Radius and Performance of ESNs.
.- Benchmarking Nonlinear Readouts in Linear Reservoir Networks.
.- Investigating Time-Scales in Deep Echo State Networks for Natural Language Pro-cessing.
.- A Spectral Interpretation of Redundancy in a Graph Reservoir.
.- Shaping Attractor Landscapes in Boolean Liquid State Machines via SDP and Global Plasticity.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.