Buxton / Serafin / Gaver | Auditory Interfaces | Buch | 978-1-03-219645-9 | sack.de

Buch, Englisch, 240 Seiten, Format (B × H): 226 mm x 153 mm, Gewicht: 356 g

Buxton / Serafin / Gaver

Auditory Interfaces

Buch, Englisch, 240 Seiten, Format (B × H): 226 mm x 153 mm, Gewicht: 356 g

ISBN: 978-1-03-219645-9
Verlag: Taylor & Francis Ltd


Auditory Interfaces explores how human-computer interactions can be significantly enhanced through the improved use of the audio channel.

Providing historical, theoretical and practical perspectives, the book begins with an introductory overview, before presenting cutting-edge research with chapters on embodied music recognition, nonspeech audio, and user interfaces.

This book will be of interest to advanced students, researchers and professionals working in a range of fields, from audio sound systems, to human-computer interaction and computer science.
Buxton / Serafin / Gaver Auditory Interfaces jetzt bestellen!

Zielgruppe


Postgraduate, Professional, and Undergraduate Advanced

Weitere Infos & Material


List of Figures

List of Tables

Preface

0.1 Introduction

0.2 Overview

0.3 The Authors

1 Nonspeech audio: an introduction

1.1 Introduction

1.2 What About Noise?

1.3 Figure and Ground in Audio

1.4 Sound and the Visually Impaired

1.5 Auditory Display Techniques

1.6 Some Examples

1.7 Sound in Collaborative Work

1.8 Function and Signal Type

1.8.1 Alarms and Warning Systems

1.9 Audio Cues and Learning

1.10 Perception and Psychoacoustics

1.11 The Logistics of Sound

1.12 Summary

2 Acoustics and psychoacoustics

2.1 Introduction

2.2 Acoustics

2.2.1 Waveforms

2.2.2 Fourier analysis and spectral plots

2.3 More Complex waves

2.3.1 Sound, Obstacles, Bending and Shadows

2.3.2 Phase: its Implication on Sound and Representations

2.3.3 The Inverse Square Law

2.3.4 Helmholtz Revisited

2.3.5 Spectrograms

2.3.6 Formants vs Partials

2.4 Some digital signal processing concepts

2.5 Spatial Hearing

2.5.1 Head-related transfer functions (HRTF)

2.5.2 3D sound distance and reverberation

2.6 Psychoacoustics

2.6.1 Just Noticeable Difference (JND)

2.6.2 Critical Bands

2.6.3 Pitch

2.6.4 Pitches, Intervals, Scales and Ratios

2.6.5 Loudness

2.6.6 Duration, Attack Time and Rhythm.

2.6.7 Microvariation and Spectral Fusion

2.6.8 Timbre

2.6.9 Masking

2.6.10 Auditory Streaming

2.6.11 Sounds with Variations

2.6.12 Psychoacoustic Illusions

2.7 Perception of 3D sound

2.7.1 Precedence / Hass effect

2.7.2 Binaural Rendering

2.8 Hearing versus listening

2.9 Annoying sounds

2.10 Pleasant sounds

2.11 Embodied sound and music cognition

2.12 Conclusions

3 Sonification

3.1 Introduction

3.2 History

3.3 Model based sonification

3.4 Case Studies

3.4.1 Case Study 1: Presenting Information in Sound

3.4.2 Case Study 2: Dynamic Representation of Multivariate Time Series Data

3.4.3 Case Study 3: Stereophonic and Surface Sound Generation

3.4.4 Case Study 4: Auditory Presentation of Experimental Data

3.4.5 Case Study 5: Sonification of EEG data

3.5 Discussion

3.6 Issues

3.7 Issues of Data

3.7.1 Issues of Sound Parameters

3.7.2 Issues of Evaluation

3.8 Conclusions

4 Earcons

4.1 Introduction

4.2 Case Studies

4.2.1 Case Study 1: Alarms and Warning Systems

4.2.2 Alarms as Applied Psychoacoustics

4.2.3 Problems With Traditional Alarms and Convergences with Audio Interfaces

4.2.4 Case Study 2: Concurrent earcons

4.2.5 Case Study 3: Earcons for visually impaired users

4.3 Conclusions

5 Everyday listening

5.1 Introduction

5.2 Musical and Everyday Listening

5.2.1 Musical and Everyday Listening are Experiences

5.3 The Psychology of Everyday Listening

5.3.1 Knowledge About Everyday Listening

5.4 The Ecological Approach To Perception

5.4.1 Developing An Ecological Account Of Listening

5.5 What Do We Hear?

5.6 The Physics of Sound-Producing Events

5.7 Vibrating Objects

5.7.1 Aerodynamic Sounds

5.7.2 Liquid Sounds

5.7.3 Temporally Complex Events

5.8 Asking People What They Hear

5.9 Attributes of Everyday Listening

5.10 Patterned, Compound, and Hybrid Complex Sounds

5.10.1 Problems and Potentials of the Framework

5.11 How Do We Hear It?

5.12 Analysis and Synthesis of Sounds and Events

5.12.1 Breaking and Bouncing Bottles

5.12.2 Impact Sounds

5.12.3 Material and Length

5.12.4 Internal Friction and Material

5.13 Sound synthesis by physical modelling

5.14 Conclusions

6. Auditory icons

6.1 Introduction

6.2 Advantages of Auditory Icons

6.3 Systems Which Use Auditory Icons

6.3.1 Case Study 1: The SonicFinder: Creating an Auditory Desktop

6.3.2 Case study 2: SoundShark: Sounds in a Large Collaborative Environment

6.3.3 Case study 3: ARKola: Studying the Use of Sound in a Complex System

6.3.4 Case study 4: ShareMon: Background Sounds for Awareness

6.3.5 Case study 5: EAR: Environmental Audio Reminders

6.3.6 Case study 6: Shoogle: Excitatory Multimodal Interaction on Mobile Devices

6.3.7 Summary

6.4 Issues for Auditory Icons

6.4.1 Mapping Sounds to Events

6.4.2 What is Being Mapped to What?

6.4.3 Types of Mapping

6.5 The Vocabulary of Auditory Icons

6.5.1 Beyond Literal Mappings: Metaphors, Sound-effects, Cliche´s, and Genre Sounds

6.6 Annoyance

6.7 The Psychoacoustics of Annoying Sounds

6.7.1 The Principle of Optimal Complexity

6.7.2 Semantic Effects

6.7.3 The Tension Between Clarity and Obtrusiveness

6.8 Conclusions

6.9 What’s Next?

7 Sonic Interaction Design

7.1 Introduction

7.2 Psychology of sonic interactions

7.3 Sonic interactions in products

7.4 Examples of objects with interesting sounds

7.5 Methods in sonic interaction design

7.6 Case studies

7.6.1 Case study 1: Naturalness influences perceived usability and pleasantness

7.6.2 Case study 2: The Ballancer: continuous sonic feedback from a rolling ball

7.7 Challenges of evaluation

7.8 Conclusions

8 Multimodal Interactions

8.1 Introduction

8.2 Audio-visual Interactions

8.3 Embodied interactions

8.4 Audio-haptic Interactions

8.5 Case study 1: Haptic Wave

8.6 Conclusions

9 Spatial auditory displays

9.1 Introduction

9.2 Hearables

9.3 Case studies

9.3.1 Case study 1: the LISTEN system

9.3.2 Case study 2: Soundscape by Microsoft

9.3.3 Case study 3: SWAN: a system for wearable audio navigation

9.3.4 Case study 4: Superhuman hearing

9.4 Conclusions

10 Synthesis and control of auditory icons

10.1 Introduction

10.2 Generating and Controlling Sounds

10.3 Parameterized Icons

10.3.1 Creating Parameterized Auditory Icons

10.3.2 Acoustic Information For Events

10.3.3 Analysis and Synthesis of Events

10.3.4 Impact Sounds

10.3.5 Mapping Synthesis Parameters to Source Attributes

10.3.6 An Efficient Algorithm for Synthesis

10.3.7 Breaking, Bouncing, and Spilling

10.3.8 From Impacts To Scraping

10.3.9 Machine Sounds

10.4 Physics based simulations

10.5 Communicating with sound models

10.6 Evaluation of sound synthesis methods

10.7 Conclusions

11 Summary and future research

Bibliography



Index


Stefania Serafin is Professor in Sonic Interaction Design at Aalborg University in Copenhagen.

Bill Buxton is a partner researcher at Microsoft Research and adjunct professor of computer science at the University of Toronto.

Bill Gaver is Professor of Design and co-director of the Interaction Research Studio at Goldsmiths, University of London.

Sara Bly is an independent consultant focused on user practice, particularly in designing technologies to
support collaboration


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.