Shah / K. Naik Integral Transforms and Applications


1. Auflage 2022
ISBN: 978-3-11-079292-8
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, Band 13, 282 Seiten

Reihe: De Gruyter Series on the Applications of Mathematics in Engineering and Information SciencesISSN

ISBN: 978-3-11-079292-8
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This work presents the guiding principles of Integral Transforms needed for many applications when solving engineering and science problems. As a modern approach to Laplace Transform, Fourier series and Z-Transforms it is a valuable reference for professionals and students alike.

Shah / K. Naik Integral Transforms and Applications jetzt bestellen!

Zielgruppe


Scholars, Researchers, Students, Professionals.

Weitere Infos & Material


1 Laplace transforms


1.1 Introduction


The Laplace transform, named after its inventor Pierre-Simon Laplace, is an integral transform. Laplace transform converts a function of a real variable (often time) to a function of a complex variable (complex frequency).

Laplace transforms are useful to solve linear ordinary differential equations and analyze frequency response and stability analysis. Process control feedback loops and their response properties and stability can thus be conveniently analyzed in the Laplace domain.

Also, depending on the boundary conditions of your problem, it can be judicious to use a Laplace transform to solve the diffusion equation, heat transfer equation, and Navier–Stokes. So, Laplace transforms will show up in many core engineering curricula, for example, mass transport, heat transport, fluid transport, and process controls. For the basic concepts of Laplace transform and its applications, one can refer to [26, 8, 9, 13, 14].

1.2 Definition of Laplace transforms


As we have explained in Introduction, the integral transform of function ft in the interval a=x=b is given by,

(1.1)lft=?abKt,sftdt=°ˆs,

where -8=a

Let ft be a function defined for t=0 0=t=8 and kernel Kt,s=e-st and then eq. (1.1) will be called Laplace transform under certain conditions to be explained later.

Thus, the Laplace transform of function ft which is defined for t=0 (is real variable), is formally defined as follows:

Lft=?08e-stftdt=Fs, Res>0

where s is the transform variable, which is a complex number.

Figure 1.1: The Laplace transforms as a mapping.

Therefore, the Laplace transform converts time domain functions and operations into frequency domain ft?Fs t?R, s?CasshowninFigure1.1.

1.3 Laplace transform of some elementary functions using definition


Example 1.1


Find the Laplace transform ft=1 for t=0.

Solution


We know that Lft=?08e-stftdt

Here, ft=1:

? Lft=1=?08e-st1dt
?L1= e-st-st=0t=8
?L1=1-slimt?8e-st-1

?L1=1-s0-1=1s=Fs Thus, L1=1s, s>0.

Example 1.2


Find the Laplace transform of f(t)=eat for t=0, where “a” is a constant.

Solution


We know that Lft=?08e-stftdt

Here f(t)=eat

?Lft=eat=?08e-steatdt
? Leat= ?08e-s-at dt
? Leat= e-s-at-s-at=0t=8
?Leat=1-s-alimt?8e-s-at-1
?Leat=1-s-a0-1=1s-a=Fs

Thus, Leat=1s-a, s>a.

Note: Similarly, Le-at=1s+a, s>-a.

Example 1.3


Find the Laplace transform of ft=sinat, where “a” is a real constant.

Solution


We know that

sinat=eiat-e-iat2i

Now, ft=sinat and Lft= ?08e-stft dt

?Lft=sinat=?08e-stsinatdt
? Lsinat= ?08e-st eiat-e-iat2i dt
=12i?08e-steiat-e-ste-iatdt=12i?08e-s-iat-e-s+iatdt=12ie-s-iat-s-ia+e-s+iats+iat=0t=8=12i1s-ia-1s+ia=12is+ia-s+ias-ias+ia=as2-ia2?i2=-1=as2+a2

Thus, Lsinat=as2+a2.

Example 1.4


Find the Laplace transform of ft=cosat, where “a” is a real constant.

Solution


We know that

cosat=eiat+e-iat2

Now, ft=cosat and Lft=?08e-stft dt ,

?Lft=cosat=?08e-stcosatdt
Lft=cosat=?08e-stcosatdt?Lcosat=?08e-steiat+e-iat2dt=12?08e-steiat+e-ste-iatdt=12?08e-s-iat+e-s+iatdt=12e-s-iat-s-ia-e-s+iats+iat=0t=8=121s-ia+1s+ia=12s-ia+s+ias-ias+ia=ss2-ia2i2=-1=ss2+a2

Thus, Lcosat=ss2+a2.

1.3.1 Linearity of Laplace transforms


Functions f1t and f2t have Laplace transforms F1s and F2s, respectively.

Also, if c1 and c2 are any constants, then,

Lc1f1t+c2f2t=c1L[f1t+c2Lf2t]=c1F1s+c2F2s

Proof. We know that

{Lft= ?08e-stft dt=Fs
?Lf1t=?08e-stf1tdt=F1s
Lf2t= ?08e-stf2t) dt=F2s

Now,

Lc1f1t+c2f2t=?08e-stc1f1t+c2f2tdt=?08e-stc1f1t+e-stc2f2tdt=?08e-stc1f1t+e-stc2f2tdt=c1?08e-stf1tdt+c2?08e-stf2tdt=c1L[f1t+c2Lf2t]=c1F1s+c2F2s

Example 1.5

Find the Laplace transform of ft=sinhat, where “a” is a real constant.

Solution

We know that

sinhat=eat-e-at2

Now,

Lsinhat= Leat-e-at2=12Leat-Le-at=12 1s-a-1s+a=12 s+a-s+as-as+a= as2-a2

(by linearity property)

Thus, Lsinhat=as2-a2

Example 1.6

Find the Laplace transform of ft=coshat, where “a” is a real constant.

Solution

We know that

coshat=eat+e-at2

Now,

Lcoshat= Leat+e-at2
=12Leat+Le-at =12 1s-a+1s+a=12 s+a+s-as-as+a=ss2-a2

(by linearity property)

Thus, Lcoshat=ss2-a2.

Note

  1. The gamma function is defined by the improper integral ?08e-xxn-1 dx=|n? for n>0

  2. If n is a positive integer, then |n+1?=n!

  3. |n+1?=n|n?

  4. ...


Prof. Dr. Nita H. Shah, Department of Mathematics, School of Sciences, Gujarat University, Ahmedabad, Gujarat-380009, India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.