Shaik / Danovich / Hiberty | A Chemist's Guide to Valence Bond Theory | Buch | 978-1-394-23879-8 | www.sack.de

Buch, Englisch, 496 Seiten

Shaik / Danovich / Hiberty

A Chemist's Guide to Valence Bond Theory

Insights Into Chemical Bonding, Reactivity, and Excited States
2. Auflage 2025
ISBN: 978-1-394-23879-8
Verlag: Wiley

Insights Into Chemical Bonding, Reactivity, and Excited States

Buch, Englisch, 496 Seiten

ISBN: 978-1-394-23879-8
Verlag: Wiley


Updated resource on theoretical aspects and applications of valence bond methods to chemical calculations

A Chemist's Guide to Valence Bond Theory explains how to use valence bond theory to think concisely and rigorously and how to use VB computations. It familiarizes the reader with the various VB-based computational tools and methods available today and their use for a given chemical problem and provides samples of inputs/outputs that instruct the reader on how to interpret the results. The book also covers the theoretical basis of Valence Bond (VB) theory and its applications to chemistry in the ground- and excited-states. Applications discussed in the book include sets of exercises and corresponding answers on bonding problems, organic reactions, inorganic/organometallic reactions, and bioinorganic/biochemical reactions.

This Second Edition contains a new chapter on chemical bonds which includes sections on covalent, ionic, and charge-shift bonds as well as triplet bond pairs, a new chapter on the Breathing-Orbital VB method with its application to molecular excited states, and several new sections discussing recent developments such as DFT-based methods and solvent effects via the Polarizable Continuum Model (PCM).

A Chemist's Guide to Valence Bond Theory includes information on: - Writing and representing valence bond wave functions, overlaps between determinants, and valence bond formalism using the exact Hamiltonian
- Generating a set of valence bond structures and mapping a molecular orbital-configuration interaction wave function into a valence bond wave function
- The “failures” of valence bond theory, such as the triplet ground state of dioxygen, and whether or not these failures are “real”
- Spin Hamiltonian valence bond theory and its applications to organic radicals, diradicals, and polyradicals

A Chemist's Guide to Valence Bond Theory is an essential reference on the subject for chemists who are not necessarily experts on theory but have some background in quantum chemistry. The text is also appropriate for upper undergraduate and graduate students in advanced courses on valence bond theory.

Shaik / Danovich / Hiberty A Chemist's Guide to Valence Bond Theory jetzt bestellen!

Weitere Infos & Material


PREFACE

1 A Brief Story of Valence Bond Theory, Its Rivalry with  Molecular Orbital Theory, Its Demise, and Resurgence 1

1.1 Roots of VB Theory 2

1.2 Origins of MO Theory and the Roots of VB–MO Rivalry 5

1.3 One Theory is Up the Other is Down 7

1.4 Mythical Failures of VB Theory: More Ground is  Gained by MO Theory 8

1.5 Are the Failures of VB Theory Real? 12

1.5.1 The O2 Failure 12

1.5.2 The C4H4 Failure 13

1.5.3 The C5H5+ Failure 13

1.5.4 The Failure Associated with the Photoelectron Spectroscopy of CH4 13

1.6 Valence Bond is a Legitimate Theory Alongside  Molecular Orbital Theory 14

1.7 Modern VB Theory: Valence Bond Theory is Coming  of Age 14

2 A Brief Tour Through Some Valence Bond Outputs  and Terminology 26

2.1 Valence Bond Output for the H2 Molecule 26

2.2 Valence Bond Mixing Diagrams 32

2.3 Valence Bond Output for the HF Molecule 33

3 Basic Valence Bond Theory 40

3.1 Writing and Representing Valence Bond Wave Functions 40

3.1.1 VB Wave Functions with Localized Atomic  Orbitals 40

3.1.2 Valence Bond Wave Functions with  Semilocalized AOs 41

3.1.3 Valence Bond Wave Functions with  Fragment Orbitals 42

3.1.4 Writing Valence Bond Wave Functions  Beyond the 2e/2c Case 43

3.1.5 Pictorial Representation of Valence Bond  Wave Functions by Bond Diagrams 45

3.2 Overlaps between Determinants 45

3.3 Valence Bond Formalism Using the Exact Hamiltonian 46

3.3.1 Purely Covalent Singlet and Triplet  Repulsive States 47

3.3.2 Configuration Interaction Involving Ionic  Terms 49

3.4 Valence Bond Formalism Using an Effective  Hamiltonian 49

3.5 Some Simple Formulas for Elementary Interactions 51

3.5.1 The Two-Electron Bond 51

3.5.2 Repulsive Interactions in Valence Bond  Theory 52

3.5.3 Mixing of Degenerate Valence Bond  Structures 53

3.5.4 Nonbonding Interactions in Valence Bond  Theory 54

3.6 Structural Coefficients and Weights of Valence Bond  Wave Functions 56

3.7 Bridges between Molecular Orbital and Valence Bond  Theories 56

3.7.1 Comparison of Qualitative Valence Bond  and Molecular Orbital Theories 57

3.7.2 The Relationship between Molecular Orbital  and Valence Bond Wave Functions 58

3.7.3 Localized Bond Orbitals: A Pictorial Bridge  between Molecular Orbital and Valence Bond  Wave Functions 60  Appendix 65  3.A.1 Normalization Constants, Energies, Overlaps, and  Matrix Elements of Valence Bond Wave Functions 65  3.A.1.1 Energy and Self-Overlap of an Atomic  Orbital- Based Determinant 66  3.A.1.2 Hamiltonian Matrix Elements and Overlaps  between Atomic Orbital-Based Determinants 68  3.A.2 Simple Guidelines for Valence Bond Mixing 68

Exercises 70

Answers 74

4 Mapping Molecular Orbital—Configuration  Interaction to Valence Bond Wave Functions 81

4.1 Generating a Set of Valence Bond Structures 81

4.2 Mapping a Molecular Orbital–Configuration Interaction  Wave Function into a Valence Bond Wave Function 83

4.2.1 Expansion of Molecular Orbital Determinants  in Terms of Atomic Orbital Determinants 83

4.2.2 Projecting the Molecular Orbital–Configuration  Interaction Wave Function onto the Rumer  Basis of Valence Bond Structures 85

4.2.3 An Example: The Hartree–Fock Wave  Function of Butadiene 86

4.3 Using Half-Determinants to Calculate Overlaps  between Valence Bond Structures 88  Exercises 89  Answers 90

5 Are the ‘‘Failures’’ of Valence Bond Theory Real? 94

5.1 Introduction 94

5.2 The Triplet Ground State of Dioxygen 94

5.3 Aromaticity–Antiaromaticity in Ionic Rings CnHn+/- 97

5.4 Aromaticity/Antiaromaticity in Neutral Rings 100

5.5 The Valence Ionization Spectrum of CH4 104

5.6 The Valence Ionization Spectrum of H2O and the  ‘‘Rabbit-Ear’’ Lone Pairs 106

5.7 A Summary 109  Exercises 111  Answers 112

6 Valence Bond Diagrams for Chemical Reactivity 116

6.1 Introduction 116

6.2 Two Archetypal Valence Bond Diagrams 116

6.3 The Valence Bond State Correlation Diagram Model  and Its General Outlook on Reactivity 117

6.4 Construction of Valence Bond State Correlation  Diagrams for Elementary Processes 119

6.4.1 Valence Bond State Correlation Diagrams  for Radical Exchange Reactions 119

6.4.2 Valence Bond State Correlation Diagrams  for Reactions between Nucleophiles and  Electrophiles 122

6.4.3 Generalization of Valence Bond State  Correlation Diagrams for Reactions  Involving Reorganization of Covalent Bonds 124

6.5 Barrier Expressions Based on the Valence Bond State  Correlation Diagram Model 126

6.5.1 Some Guidelines for Quantitative Applications  of the Valence Bond State Correlation Diagram  Model 128

6.6 Making Qualitative Reactivity Predictions with the  Valence Bond State Correlation Diagram 128

6.6.1 Reactivity Trends in Radical Exchange  Reactions 130

6.6.2 Reactivity Trends in Allowed and Forbidden  Reactions 132

6.6.3 Reactivity Trends in Oxidative–Addition  Reactions 133

6.6.4 Reactivity Trends in Reactions between  Nucleophiles and Electrophiles 136

6.6.5 Chemical Significance of the f Factor 138

6.6.6 Making Stereochemical Predictions with the  VBSCD Model 138

6.6.7 Predicting Transition State Structures with  the Valence Bond State Correlation Diagram  Model 140

6.6.8 Trends in Transition State Resonance Energies 141

6.7 Valence Bond Configuration Mixing Diagrams: General  Features 144

6.8 Valence Bond Configuration Mixing Diagram with Ionic  Intermediate Curves 144

6.8.1 Valence Bond Configuration Mixing Diagrams  for Proton-Transfer Processes 145

6.8.2 Insights from Valence Bond Configuration  Mixing Diagrams: One Electron Less–One  Electron More 146

6.8.3 Nucleophilic Substitution on Silicon: Stable  Hypercoordinated Species 147

6.9 Valence Bond Configuration Mixing Diagram with  Intermediates Nascent from ‘‘Foreign States’’ 149

6.9.1 The Mechanism of Nucleophilic Substitution  of Esters 149

6.9.2 The SRN2 and SRN2c Mechanisms 150

6.10 Valence Bond State Correlation Diagram: A General  Model for Electronic Delocalization in Clusters 153  6.10.1 What is the Driving Force for the D6h  Geometry of Benzene, s or p? 154

6.11 Valence Bond State Correlation Diagram: Application  to Photochemical Reactivity 157

6.11.1 Photoreactivity in 3e/3c Reactions 158

6.11.2 Photoreactivity in 4e/3c Reactions 159

6.12 A Summary 163  Exercises 171  Answers 176

7 Using Valence Bond Theory to Compute and  Conceptualize Excited States 193

7.1 Excited States of a Single Bond 194

7.2 Excited States of Molecules with Conjugated Bonds 196

7.2.1 Use of Molecular Symmetry to Generate  Covalent Excited States Based on Valence  Bond Theory 197

7.2.2 Covalent Excited States of Polyenes 209

7.3 A Summary 212  Exercises 215  Answers 216

8 Spin Hamiltonian Valence Bond Theory and its  Applications to Organic Radicals, Diradicals, and  Polyradicals 222

8.1 A Topological Semiempirical Hamiltonian 223

8.2 Applications 225

8.2.1 Ground States of Polyenes and Hund’s Rule  Violations 225

8.2.2 Spin Distribution in Alternant Radicals 227

8.2.3 Relative Stabilities of Polyenes 228

8.2.4 Extending Ovchinnikov’s Rule to Search for  Bistable Hydrocarbons 230

8.3 A Summary 231  Exercises 232  Answers 234

9 Currently Available Ab Initio Valence Bond  Computational Methods and their Principles 238

9.1 Introduction 238

9.2 Valence Bond Methods Based on Semilocalized Orbitals 239

9.2.1 The Generalized Valence Bond Method 240

9.2.2 The Spin-Coupled Valence Bond Method 242

9.2.3 The CASVB Method 243

9.2.4 The Generalized Resonating Valence Bond  Method 245

9.2.5 Multiconfiguration Valence Bond Methods  with Optimized Orbitals 246

9.3 Valence Bond Methods Based on Localized Orbitals 247

9.3.1 Valence Bond Self-Consistent Field Method  with Localized Orbitals 247

9.3.2 The Breathing-Orbital Valence Bond Method 249

9.3.3 The Valence Bond Configuration Interaction  Method 252

9.4 Methods for Getting Valence Bond Quantities from  Molecular Orbital-Based Procedures 253

9.4.1 Using Standard Molecular Orbital Software  to Compute Single Valence Bond Structures  or Determinants 253

9.4.2 The Block-Localized Wave Function and  Related Methods 254

9.5 A Valence Bond Method with Polarizable Continuum  Model 255  Appendix 257  9.A.1 Some Available Valence Bond Programs 257  9.A.1.1 The TURTLE Software 257  9.A.1.2 The XMVB Program 257  9.A.1.3 The CRUNCH Software 257  9.A.1.4 The VB2000 Software 258  9.A.2 Implementations of Valence Bond Methods in  Standard Ab Initio Packages 258

10 Do Your Own Valence Bond Calculations—A  Practical Guide 271

10.1 Introduction 271

10.2 Wave Functions and Energies for the Ground State  of F2 271

10.2.1 GVB, SC, and VBSCF Methods 272

10.2.2 The BOVB Method 276

10.2.3 The VBCI Method 280

10.3 Valence Bond Calculations of Diabatic States and  Resonance Energies 281

10.3.1 Definition of Diabatic States 282

10.3.2 Calculations of Meaningful Diabatic States 282

10.3.3 Resonance Energies 284

10.4 Comments on Calculations of VBSCDs and VBCMDs 287

Appendix 290

10.A.1 Calculating at the SD–BOVB Level in Low  Symmetry Cases 290

11 The Chemical Bonds in Valence Bond Theory 304

11.1 Introduction 304

11.2 VB Approaches: Their Bond Descriptions and Representations 304

11.2.1 Single Two-Electron Bonds 304

11.2.2 Multiple Two-Electron Bonds 306

11.2.3 Classical VB Methods for Single Bonds 306

11.2.4 VB Methods for Multiple Bonds 307

11.3 Applications of VB Theory to Chemical Bonding 309

11.3.1 Electron-Pair Bonds 309  11.3.1.1 The Logic Behind the Existence of  Three Bond Families 314  11.3.1.2 Do Other Computational Methods  Reveal the CSB Family? 315

11.3.2 Pauli Repulsion: The Major Driver of CSB 317  11.3.2.1 Bonds Between Main Elements 318  11.3.2.2 Bonds Between Transition Metals  (TMs) 320  11.3.2.3 Post Transition Metals, Groups 11  and 12 321  11.3.2.4 Other CSB Factors 321

11.3.3 Experimental Manifestations of CSB 322

11.3.4 Deducing Bonding Features from Energy  Barriers 323

11.3.5 Unique Features of Charge-Shift Bonds 324

11.4 Why and When will Atoms Form Hypervalent  Molecules? 325

11.5 Features of Orbital Hybridization in Modern VB  Theory 328

11.5.1 Overlaps of Optimized Hybrid Orbitals 329

11.5.2 Typical Molecules and Their Variationally  Optimized Hybrid Orbitals 330  11.5.2.1 Tetrahedral Hybrids in CH4, B and  N 330  11.5.2.2 Tetrahedral Hybrids 332  11.5.2.3 Linear Hybrids 333

11.5.3 An Overview of Hybridization Results 333  11.5.3.1 Summary of Hybridization Trends in  Classical VB Theory 334  11.6 Description of Multipole Bonding 334  11.6.1 The Bond Multiplicity of C2 335  11.6.2 Multi-Structure VBSCF Calculations of C2 335  11.6.2.1 The Covalent VB-Structure Set 336  11.6.2.2 Adding the Ionic Structures 337

11.6.3 Properties of Quadruply-Bonded Species 342  11.6.3.1 The Resonance-Energy Effect of  Doubly-Bonded Structures on  Quadruple Bonds 343  11.6.3.2 The Nature of the s-Bonds in C2 343  11.6.3.3 The Exo s-Bonds in C2 344

11.6.4 Some Lessons from the C2 Study 344

11.6.5 The Kinetic Stability of Dioxygen  Originates in the Cooperative p-Three-  Electron Bonding 345

11.6.6 Outcomes of p-s Interplay in Multiple  Bonding 347  11.6.6.1 The p-s Interplay in Benzene: What  Factor Determines the D6h Structure? 348  11.6.6.2 The p-s Interplay in Triply-Bonded  Molecules 352  11.6.6.2.1 Conclusions and Extensions of  the p-s Interplay 353  11.7 Triplet-Pair Bonds (TPB) in Ferromagnetic  Metal-Clusters 354

11.7.1 VB Modelling of Bonding in Triplet-Pair  Bonds 357

11.7.2 VB Modelling of n+1Mn Clusters 360

11.7.3 Bond Energies of Triplet-Pair Bonds 364

11.7.4 A Summary of No-Pair Bonding 365  11.8 Concluding Remarks 368  11.9 Supporting Information 368  11.9.1 Supplementary Issues 368  11.9.2 VB Structures for C2 370  11.9.3 Pauli Repulsion and VB Structure Counts  For Triplet-Pair Bond (TPB) in No-Pair  Clusters 377  11.9.3.1 Coinage Metal Clusters 377  11.9.3.2 Alkali Metal Clusters 379

12 Breathing-Orbital Valence Bond: Methods and  Applications 391

12.1 Introduction 391

12.2 Methodology 391  12.2.1 From VBSCF to BOVB 392  12.2.2 Static and Dynamic Correlations in  Electron-Pair Bonds 393  12.2.3 Odd-Electron Bonds 395  12.2.4 Spin-Unrestricted VBSCF and BOVB  Methods 398

12.3 Some Applications of the BOVB Method 398  12.3.1 A Quantitative Definition of Diradical  Character 398  12.3.2 When the Diradical Character Rules the  Reaction Barriers 400  12.3.3 Fast, Accurate and Insightful Calculations  of Challenging Excited States 403  12.3.3.1 The V State of Ethylene 403  12.3.3.2 The Low-Lying Excited States of Ozone  and Sulfur Dioxide 406

12.4 Concluding Remarks 410  12.4.1 The Specific Insight Provided by VB  Ab Initio Computations 410  12.4.2 Non-Orthogonality: A Handicap or an  Opportunity? 411

Epilogue 416

Glossary 418

Index 423


Sason Shaik is a Saerree K. and Louis P. Fiedler Emeritus Professor of Chemistry at the Hebrew University. He has developed a number of new paradigms and concepts using valence bond theory and participated in the initiation of various valence bond methods.

David Danovich is a senior computational chemist at the Institute of Chemistry in the Hebrew University, and an expert on VB calculations

Philippe C. Hiberty is an Emeritus Director of Research at the Centre National de la Recherche Scientifique in the Université Paris-Saclay. He has developed the Breathing-Orbital VB method.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.