Sharma | Nanoelectronics | Buch | 978-1-394-27516-8 | www.sack.de

Buch, Englisch, 576 Seiten

Sharma

Nanoelectronics

Fundamentals, Advances, and Applications
1. Auflage 2025
ISBN: 978-1-394-27516-8
Verlag: Wiley

Fundamentals, Advances, and Applications

Buch, Englisch, 576 Seiten

ISBN: 978-1-394-27516-8
Verlag: Wiley


Nanoelectronics is an essential resource for anyone looking to stay at the forefront of innovation, as it thoroughly explores cutting-edge methodologies and design principles for ultra-nanoscale technology.

Modern research aims to make devices more efficient so that next-level systems will be energy-efficient, have faster operating speeds, and occupy minimal space. Traditional methods for the implementation of systems are approaching their fundamental limitations. The field of ultra-nanoscale technology is a prime choice for researchers to work and develop technologies for future systems. The advantages of the ultra-nanoscale field are low-dimensional and high-speed implementation with a focus on high levels of functional integration.

Nanoelectronics: Fundamentals, Advances, and Applications comprehensively covers both introductory and advanced-level ideas and methodologies, which support future system designs in ultra-nanoscale technologies. The merits and challenges of different technological devices and systems are also discussed in depth. This book focuses on design and techniques for the next generation of intelligent systems, making it an essential resource for novices and experts exploring this innovative technology.

Sharma Nanoelectronics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xvii

1 Gaussian Doped SOI Junctionless FinFET: A Study of RDF Variability and Parametric Sensitivity 1
Milad Mehmood Zargar, Md. Waseem Akram, Umayia Mushtaq, Nazida Ansari, Sana Fatima and Dipak Kumar Singh

1.1 Introduction 2
1.2 FinFET Technology 4
1.3 Device Variability 6
1.4 Junctionless Transistors 10
1.5 Global TCAD Solutions 18
1.6 Simulation Methodology 21
1.7 Findings and Conversations 22
1.8 Conclusion 37

2 Nanotechnology and Applications 45
Yogesh Singh, Sunny Kumar Sharma, Purnima Hazra and Ashish Choudhary

2.1 Introduction 46
2.2 What Makes Nanotechnology Work 48\
2.3 Preparation Method 50
2.4 Classification of Nanoparticles (NPs) 51
2.5 Applications of Nanotechnology 52
2.6 Future Prospect 59
2.7 Conclusion 60

3 Comparative Investigation of Various SRAM Cells with High Stability and Low Leakage 69
Seema Eram, Umayia Mushtaq, Nazida Ansari and Md. Waseem Akram

3.1 Introduction 70
3.2 Previous Literature 74
3.3 Leakage Reduction Techniques 76
3.4 Architecture and Functioning of Different SRAM Cell 77
3.5 SRAM Cell: Various Performance Parameters 82
3.6 The Proposed 8-T SRAM Cell 86
3.7 Results and Discussion 88
3.8 Conclusion 96

4 Application of Nanotechnology in the Development of Latent Fingerprints in the Field of Forensic Dermatoglyphics 103
Navneet Kumar and Himanshu Yadav

4.1 Introduction 104
4.2 Principle of Fingerprint Detection 105
4.3 Techniques for LFPs Analysis 106
4.4 Nanotechnology in Forensic Science 110
4.5 Discussion 119
4.6 Conclusion 120

5 Nanoelectronics: A Journey from Planar Transistor to Beyond Semiconductor 129
Kajal and Vijay Kumar Sharma

5.1 Introduction 130
5.2 Evolution of Transistor Technology 133
5.3 Advances in Transistor Design 140
5.4 Challenges in Silicon Semiconductor Technology 143
5.5 Beyond Silicon: New Materials and Technologies 148
5.6 Quantum and Molecular Electronics 151
5.7 Advanced Device Concept 152
5.8 Conclusion 155

6 EDP-Efficient Level Shifters for Super Threshold Voltage Level Shifting Applications 165
Mohammed Mahaboob Basha, Gundala Srinivasulu and V. Madhurima

6.1 Introduction 166
6.2 Types of Voltage Level Shifters 169
6.3 Performance Analysis of Start of Art Level Shifters 183
6.4 Conclusion 185

7 Applications of Nanotechnology in Nanoelectronics: Communication and Biomedical Field 191
Rubby Mahajan and Ram Prakash

7.1 Introduction 191
7.2 2D and 3D Materials 192
7.3 Multigates 194
7.4 Carbon Nanotubes 198
7.5 Graphene Nanoribbon (GNRs) 207
7.6 Tunnel Transistor 211
7.7 Junctionless Transistor 213
7.8 Concept of Single Electron Idea 217
7.9 Fundamental Principles of Spintronics 219
7.10 Future Prospects 221

8 Exploring CMOS, PTL and GDI Logic Families Based One Bit Full Adder and Subtractor Circuits in Subthreshold Region for Energy and EDP Efficient Applications 229
Mohammed Mahaboob Basha, P. Lachi Reddy and Srinivasulu Gundala

8.1 Introduction 230
8.2 GDI- and CMOS-Based Logic Circuits 232
8.3 A Variety of Approaches and Operation of the GDI-Based Full Adder Circuits 237
8.4 Subthreshold Subtractor Circuits for Energy Efficient Signal Processing Applications 249
8.5 Conclusion 261

9 TFET Fundamentals: A Gateway to Nanoscale Electronics 267
Khuraijam Nelson Singh, Ningombam Ajit Kumar, Sushmita Dandeliya, Pranab Kishore Dutta, Sonal Agrawal, Anurag Srivastava and Gaurav Kaushal

9.1 Introduction 268
9.2 Fundamentals of TFET 270
9.3 Techniques for Enhancing Performance 276
9.4 Application in Biosensor 280
9.5 Significance of TFET in Advancing Nanoscale Electronics 286
9.6 Challenges and Future Outlook 287
9.7 Conclusion 288

10 Revolutionizing Data Processing: In-Memory Computing and the Shift from Traditional Architectures 297
Nazrana Gulzar, Nazida Ansari, Umayia Mushtaq and Md Waseem Akram

10.1 Introduction 298
10.2 In-Memory Computing: Enhancing Data Processing Efficiency 302
10.3 Comparing Traditional Computing Architecture with In-Memory Computing 303
10.4 Applications of IMC 305
10.5 Types of Memory Used in IMC 307
10.6 Operations of 6T-SRAM 311
10.7 Architecture of SRAM-Based IMC 313
10.8 Comparative Analysis of IMC Architecture Using Different Memory Types 314
10.9 Design Challenges with SRAM Based IMC 325
10.10 Conclusion 329

11 The Tunnel FET: Fundamentals, Calibration, and Simulation 333
Nisha Yadav, Sunil Jadav and Gaurav Saini

11.1 Need of Tunnel FETs 334
11.2 Origin of Tunnel FETs 336
11.3 TFET Structure and Working Principle 336
11.4 Performance Parameters 340
11.5 The Development of TFET Technology 342
11.6 Calibration 349
11.7 Simulation of DG-TFET 350
11.8 Challenges for TFET 353
11.9 Conclusion 354

12 The Junctionless Device 363
Sandeep Kumar, Arun Kumar Chatterjee and Rishikesh Pandey

12.1 Introduction 363
12.2 Qualitative Behavior of JLFETs 366
12.3 Electrical Characteristics of JLFET 374
12.4 Design Constraints for Junctionless Devices 375
12.5 Classification of JLFETs 378
12.6 Status of Model Formulation for JLFETs 384
12.7 Applications of JLFETs 385
12.8 Simulation of JLFETs 386
12.9 Conclusion 390

13 Tuning the Electronic and Spintronic Properties of BN Nanoribbons via C-Doping 395
Ajay Kumar Rakesh, Ravindra Kumar, Ankita Nemu, Neha Tyagi, Anil Govindan and Neeraj K. Jaiswal

13.1 Introduction 396
13.2 Significance of Boron Nitride Nanoribbons 399
13.3 Techniques for Synthesis of h-BN 400
13.4 Synthesis of BNNR 404
13.5 Edge Passivation of BNNR 405
13.6 Doping of BNNR 406
13.7 Computational Details 407
13.8 Results and Discussion 409
13.10 Summary 418

14 Revolutionizing Information Processing: Unveiling the Potential of Spintronics through Cutting-Edge Electron Spin Research 429
R. Bhattacharya

14.1 Introduction 430
14.2 Understanding Spintronics: Types 430
14.3 Spintronic Materials and Devices 431
14.4 Manipulating Spin–Orbit Coupling 445
14.5 Spin Transport and Injection 447
14.6 Spintronic Memory Devices 455
14.7 Challenges and Future Directions 460
14.8 Mathematical Consideration of Spintronics 465
14.9 Conclusions 469

15 Trade-Offs in the Ultra-Nanoscale: Balancing Performance and Constraints 475
Pankaj Bhambri and Alex Khang

15.1 Introduction 476
15.2 Overview of Ultra-Nanoscale Design 477
15.3 Performance Optimization in Ultra-Nanoscale Applications 481
15.4 Nanomaterials in Ultra-Nanoscale Technologies 485
15.5 Design Techniques with Logical Schematics and Characteristics 489
15.6 Complex Limitations in the Ultra-Nanoscale Realm 490
15.7 Manufacturing Challenges and Solutions 494
15.8 Ethical Considerations in Ultra-Nanoscale Technologies 497
15.9 Real-World Case Studies and Examples 498
15.10 Conclusion 501

16 Carbon Nanotube Field Effect Transistor Technology: Fundamentals & Applications 509
Ekta Jolly and Vijay Kumar Sharma

16.1 Introduction 510
16.2 CNT Fundamentals 510
16.3 CNTFET Modeling Approaches 515
16.4 CNTFET-Based Circuits 519
16.5 Conclusion 535

References 535
Index 541


Vijay Kumar Sharma, PhD is an assistant professor in the School of Electronics and Communication Engineering at Shri Mata Vaishno Devi University. He is published widely in journals and conferences of repute and has authored many book chapters and patents. His research interests are in the area of low-power circuit design.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.