Shirvany / Corona Pampín | Recommender Systems in Fashion and Retail | Buch | 978-3-031-22191-0 | www.sack.de

Buch, Englisch, 119 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 371 g

Reihe: Lecture Notes in Electrical Engineering

Shirvany / Corona Pampín

Recommender Systems in Fashion and Retail

Proceedings of the Fourth Workshop at the Recommender Systems Conference (2022)
1. Auflage 2023
ISBN: 978-3-031-22191-0
Verlag: Springer Nature Switzerland

Proceedings of the Fourth Workshop at the Recommender Systems Conference (2022)

Buch, Englisch, 119 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 371 g

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-3-031-22191-0
Verlag: Springer Nature Switzerland


This book includes the proceedings of the fourth workshop on recommender systems in fashion and retail (2022), and it aims to present a state-of-the-art view of the advancements within the field of recommendation systems with focused application to e-commerce, retail, and fashion by presenting readers with chapters covering contributions from academic as well as industrial researchers active within this emerging new field. Recommender systems are often used to solve different complex problems in this scenario, such as product recommendations, size and fit recommendations, and social media-influenced recommendations (outfits worn by influencers).

Shirvany / Corona Pampín Recommender Systems in Fashion and Retail jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Recommender Systems in Fashion and Retail: Proceedings of the FourthWorkshop at the Recommender Systems Conference (2022) Humberto Jes´us Corona Pamp´in, Reza Shirvany
1. Identification of Fine-grained Fit Information from Customer Reviews in FashionYevgeniy Puzikov, Sonia Pecenakova, Rodrigo Weffer, Leonidas Lefakis,Reza Shirvany1.1 Introduction 1.2 Related Work1.3 Experiments 1.4 Conclusion References
2. Personalization through User Attributes for Transformer-based Sequential RecommendationElisabeth Fischer, Alexander Dallmann and Andreas Hotho2.1 Introduction 2.2 Related Work 2.3 Problem Setting2.4 User Attributes Personalization for Transformers 2.5 Datasets 2.6 Experiments 2.7 Conclusion References 
3. Reusable Self-Attention-based Recommender System for Fashion Marjan Celikik, Jacek Wasilewski, Sahar Mbarek, Pablo Celayes, Pierre Gagliardi, Duy Pham, Nour Karessli, Ana Peleteiro Ramallo3.1 Introduction 3.2 RELATED WORK 3.3 ALGORITHM3.4 OFFLINE EVALUATION 3.5 ONLINE RESULTS 3.6 CONCLUSIONSReferences 
4. Adversarial Attacks against Visually-aware Fashion Outfit Recommender Systems Matteo Attimonelli, Gianluca Amatulli, Leonardo Di Gioia, Daniele Malitesta, Yashar Deldjoo, Tommaso Di Noia4.1 Introduction and Related work 4.2 Visual attacks against fashion classifiers 4.3 Experimental setup 4.4 Results and discussion 4.5 Conclusions References 5. Contrastive Learning for Topic-Dependent Image Ranking Jihyeong Ko, Jisu Jeong and Kyumgmin Kim5.1 Introduction 5.2 Related Work 5.3 Method 5.4 Experiments 5.5 Conclusion References 
6. Dataset for Learning Graph Representations to Predict Customer Returns in Fashion Retail Jamie McGowan, Elizabeth Guest, Ziyang Yan, Cong Zheng, Neha Patel, Mason Cusack, Charlie Donaldson, Sofie de Cnudde, Gabriel Facini and Fabon Dzogang6.1 Introduction 6.2 Data Description 6.3 Methodology 6.4 Experiment Results 6.5 Conclusion 
7. End-to-End Image-Based Fashion Recommendation Shereen Elsayed, Lukas Brinkmeyer and Lars Schmidt-Thieme7.1 Introduction 7.2 Related work 7.3 Methodology 7.4 Experiments 7.5 Conclusion 7.6 Acknowledgements References 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.