Sivasankar | Instrumental Methods of Analysis | Buch | 978-0-19-807391-8 | sack.de

Buch, Englisch, 600 Seiten, Format (B × H): 173 mm x 251 mm, Gewicht: 816 g

Reihe: Oxford Higher Education

Sivasankar

Instrumental Methods of Analysis

Buch, Englisch, 600 Seiten, Format (B × H): 173 mm x 251 mm, Gewicht: 816 g

Reihe: Oxford Higher Education

ISBN: 978-0-19-807391-8
Verlag: OXFORD UNIV PR


Instrumental Methods of Analysis is a textbook designed to introduce various analytical and chemical methods, their underlying principles and applications to the undergraduate engineering students of biotechnology and chemical engineering. This book would also be of interest to students who pursue their B. Sc / M. Sc degree programs in biotechnology and chemistry.

The book starts with a discussion on fundamentals of analytical chemistry, followed by data handling and statistical analysis. Wet chemical methods form the third chapter, where all the conventional titrimetric and gravimetric analysis is dealt with. It then moves onto discuss topics such as the microscopy, optical methods, various spectroscopic methods, X-ray methods, chromatographic methods, electrophoresis, and bulk separation methods. The last few chapters discuss electroanalytical methods,
thermal, radioanalytical and finally the surface analytical methods.

Illustrated with block diagrams throughout the text, the book provides review questions, and numerical examples in all relevant chapters.
Sivasankar Instrumental Methods of Analysis jetzt bestellen!

Zielgruppe


Primary: Core for Biotech, Chemical. Secondary: B. Sc / M. Sc.


Autoren/Hrsg.


Weitere Infos & Material


1: Introduction to Analytical Chemistry 1
1.1 Scope and Applications of Analytical Chemistry 1
1.2 Analytical Process 2
1.3 Selection of Chemical Reactions for Analysis 2
1.4 Equilibrium Methods 3
1.5 Concepts of Chemical Equilibrium 4
1.6 Types of Equilibria in Aqueous Media 6
1.6.1 Self-dissociation of Water 6
1.6.2 Acid-base Equilibria 7
1.6.3 The pH Scale 8
1.6.4 Hydrolysis of Salts and the pH of Salt Solutions 9
1.6.5 Buffer Solutions 10
1.6.6 Complexation Equilibria 10
1.6.7 Solubility Equilibria 11
1.6.8 Redox Equilibria 12
1.7 Kinetic Methods of Analysis 13
1.7.1 Experimental Methods for the Determination of Rate of Reaction 15
1.7.2 Analytical Applications of Kinetic Methods 15
1.8 Enzyme Catalysed Reactions 16
1.8.1 Mechanistic and Kinetic Aspects of Enzyme Catalysed Reactions 16
1.8.2 Applications of Enzymatic Analysis 17
1.8.3 Substrates as Analytes 18
1.8.4 Enzymes as Analytes 19
1.9 Stoichiometric Calculations 20
1.10 Expression of Concentrations of Solutions 22
1.11 Reporting of Results 23
2: Assessment of Analytical Data 24
2.1 Introduction 24
2.2 Definitions of Terms 24
2.2.1 True Value 24
2.2.2 Precision 24
2.2.3 Accuracy 24
2.2.4 Error 25
2.2.5 Mean and Median 25
2.2.6 Spread 25
2.2.7 Deviation 25
2.2.8 Population Standard Deviation 25
2.2.9 Relative Standard Deviation and Coefficient of Variation 26
2.2.10 Variance 26
2.2.11 Significant Figures 26
2.3 Types of Errors 27
2.3.1 Gross Errors 27
2.3.2 Systematic Errors or Determinate Errors 27
2.3.3 Minimizing Systematic Errors 28
2.3.4 Random Errors or Indeterminate Errors 29
2.4 Statistical Treatment of Random Errors 29
2.4.1 Distribution of Random Errors 29
2.5 Evaluation of Experimental Results 30
2.5.1 Reliability of Measurements 30
2.5.2 Analysis of Data 31
2.6 Comparison of Results 32
2.6.1 F-test 32
2.6.2 Student's t-test 33
2.6.3 Paired t-test 34
2.7 Standardization of Instrumental Methods of Analysis 35
2.7.1 Limit of Detection and Limit of Quantitation 35
2.7.2 Calibration Chart or Curve 35
2.7.3 Method of Standard Addition 36
2.7.4 Method of Least Squares 37
3: Wet Chemical Methods of Analysis 40
3.1 Introduction 40
3.2 Volumetry 40
3.3 Classification of Volumetric Methods 41
3.4 Standard Solutions and Standard Substances 41
3.5 Neutralization Titrations 42
3.5.1 Theory of Acid-base Indicators 43
3.5.2 Titration Curves 45
3.5.3 Titration of a Strong Acid with a Strong Base 45
3.5.4 Titration of a Weak Acid with a Strong Base 47
3.5.5 Titration of a Weak Base with a Strong Acid 49
3.5.6 Titration of a Weak Acid with a Weak Base 49
3.5.7 Neutralization of Mixtures of Strong and Weak Acids or Strong and Weak Bases 50
3.5.8 Titration of Polybasic Acids with a Strong Base 50
3.5.9 Titrations in Non-aqueous Media 51
3.5.10 Applications of Acid-base Titrations 53
3.6 Precipitation Titrations 56
3.6.1 Argentometry 56
3.6.2 Detection of End Points 58
3.7 Complexation Titrations 60
3.7.1 Metal-EDTA Equilibrium 62
3.7.2 Titration Curves 63
3.7.3 Metal Ion Indicators 66
3.7.4 Theory of Metal Ions Indicators 67
3.7.5 Types of EDTA Titrations 68
3.7.6 Applications of EDTA Titrations 69
3.8 Redox Titrations 72
3.8.1 Redox Indicators 74
3.8.2 Permanganometry 75
3.8.3 Dichrometry 76
3.8.4 Iodometry 76
3.8.5 Applications of Redox Titrations 77
3.9 Gravimetry 79
3.10 Volatilization Methods 80
3.11 Precipitation Methods 80
3.11.1 Theoretical Principles of Precipitation Methods 81
3.11.2 Criteria for an Ideal Gravimetric Estimation 81
3.11.3 Precipitating Agents 81
3.11.4 Factors Affecting Solubility of Precipitates 82
3.11.5 Mechanism of Formation of Precipitates 83
3.11.6 Colloidal Precipitates 84
3.11.7 Contamination of Precipitates 84
3.11.8 Practical Aspects 85
3.11.9 Homogeneous Precipitation 88
3.11.10 A Few Examples of Gravimetric Estimations 88
3.12 A Few Examples of Analysis of Alloys, ORES and Complex Materials by WetChemical Methods 90
3.12.1 Analysis of an Iron Ore 90
3.12.2 Analysis of Brass 90
3.12.3 Analysis of Solder 91
3.12.4 Analysis of Cement 91
4: Optical Methods 96
4.1 Introduction 96
4.2 Refraction 96
4.3 Refractive Index 96
4.3.1 Measurement of Refractive Index 98
4.3.2 Abbe Refractometer 98
4.3.3 Immersion Refractometer 100
4.3.4 Applications of Refractometry 101
4.4 Polarimetry 101
4.4.1 Polarization of Light 101
4.4.2 Polarizers 103
4.4.3 Polarimetry Theory 104
4.4.4 Polarimeter 105
4.4.5 Applications of Polarimetry 107
4.5 Optical Rotatory Dispersion and Circular Dichroism Spectra 108
5: Microscopy 112
5.1 Introduction 112
5.2 Optical Microscope 112
5.2.1 Compound Light Microscope 112
5.3 Imaging Techniques 115
5.3.1 Bright-field Microscopy 115
5.3.2 Dark-field Microscopy 116
5.3.3 Phase Contrast Microscopy 118
5.3.4 Fluorescence Microscope 120
5.3.5 Confocal Microscopy 120
5.3.6 Polarizing Microscope 122
5.3.7 Flow Cytometry 122
5.4 Electron Microscope 123
5.4.1 Transmission Electron Microscope 124
5.4.2 Scanning Electron Microscope 125
5.4.3 Scanning Transmission Electron Microscope (Stem) 128
5.5 Scanning Probe Microscopy 128
5.5.1 Scanning Tunnelling Microscope 128
5.5.2 Atomic Force Microscope 129
6: Spectroscopic Methods of Analysis 132
6.1 Introduction 132
6.2 Electromagnetic Radiation 132
6.2.1 Electromagnetic Spectrum 133
6.3 Energy Levels in Atoms 134
6.3.1 Interaction of Electromagnetic Radiation with Atoms 135
6.4 Energy Levels in Molecules 136
6.4.1 Interaction of Electromagnetic Radiation with Molecules 137
6.5 Classification of Spectroscopic Techniques 138
6.6 Absorption and Emission Spectra 139
6.6.1 Width of Spectral Lines 139
6.6.2 Intensity of Spectral Lines 140
6.7 Analytical Applications of Spectroscopy 142
6.7.1 Beer-Lambert Law 142
6.7.2 Applications of Beer-Lambert Law 143
6.7.2 Limitations to Beer-Lambert's Law 144
6.8 Visual Colorimetry 145
6.8.1 Quantitative Analysis 147
6.8.2 Instruments for Optical Spectrometry and Measurement of Absorbance 148
6.9 Spectrometers and their Components 149
6.9.1 Radiation Sources 149
6.9.2 Dispersing Devices 150
6.9.3 Sample Holders 158
6.9.4 Radiation Detectors 158
6.9.5 Signal Processors and Display Units 163
6.10 Configurations of Spectrometers 163
6.11 Fourier Transform Spectrometers 164
7: Atomic Spectroscopy 168
7.1 Introduction 168
7.2 Classification of Atomic Spectrometric Methods 168
7.3 Atomization 168
7.4 Atomization Methods 169
7.4.1 Flame Atomization 169
7.4.2 Electrothermal Atomization 171
7.4.3 Glow Discharge Atomization 172
7.4.4 Cold-vapour Atomization 172
7.4.5 Hydride Atomization 172
7.5 Atomic Absorption Spectrometry 173
7.5.1 Principle 173
7.5.2 Atomic Absorption Spectrometer 174
7.5.3 Working of AAS 177
7.5.4 Interferences in Atomic Absorption Measurements 179
7.6 Atomic Emission Spectroscopy 180
7.6.1 Excitation Methods 180
7.7 Flame Emission Spectrometry 181
7.8 Plasma Emission Spectrometry 183
7.8.1 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 183
7.8.2 Inductive Coupled Plasma-mass Spectrometry 185
7.8.3 Direct Current Plasma Atomic Emission Spectroscopy (DCP-AES) 185
7.8.4 General Features of Plasma Source Spectrometers 186
7.9 Atomic Fluorescence Spectroscopy 186
8: Molecular Spectroscopy 189
8.1 Introduction 189
8.2 UV-Visible Spectroscopy 189
8.2.1 Electronic Spectra of Molecules 189
8.2.2 Franck-Condon Principle 190
8.2.3 Electronic Transitions in Organic Molecules 193
8.2.4 Factors Affecting Absorption Bands 194
8.2.5 Electronic Transitions in Inorganic Species 196
8.2.6 UV-visible Spectrophotometer 196
8.2.7 Analytical Applications of UV-visible Spectroscopy 198
8.2.8 Simultaneous Determinations 199
8.2.9 Photometric Titrations 200
8.2.10 Examples of Spectrophotometric Determinations 201
8.3 Infrared Spectrophotometry 204
8.3.1 Infrared Region 204
8.3.2 Molecular Vibrations 204
8.3.4 Vibrational Frequencies and IR Absorption Bands 206
8.3.5 Infrared Spectrum 208
8.3.6 IR Spectrophotometer 211
8.3.7 Sample Preparation 213
8.3.8 Applications 213
8.3.9 Diffuse Reflectance Infrared Fourier Transform Spectrometry 215
8.3.10 Attenuated Total Reflectance Spectroscopy 216
8.3.11 Near Infrared Spectroscopy 216
8.3.12 Far Infrared Spectroscopy 217
8.4 Raman Spectroscopy 217
8.4.1 Comparison of Raman and Infrared Spectra 220
8.4.2 Raman Spectrometer 220
8.4.3 Applications of Raman Spectroscopy 221
8.4.4 Resonance Raman Spectroscopy 222
8.5 Microwave Spectrometry 223
8.5.1 Microwave Spectrometer 225
8.6 Molecular Fluorescence and Phosphorescence 225
8.6.1 Molecular Fluorescence Spectroscopy 226
8.6.2 Fluorescent Molecules 227
8.6.3 Fluorescence and Molecular Structure 227
8.6.4 Factors Affecting Fluorescence Emission 228
8.6.5 Analytical Aspects of Fluorescence Emission 229
8.6.6 Fluorometers 229
8.6.7 Applications of Fluorescence Measurements 230
8.6.8 Molecular Phosphorescence Spectroscopy 231
8.7 Chemiluminescence 231
8.8 Turbidimetry and Nephelometry 232
9: Magnetic Resonance Spectroscopy 236
9.1 Introduction 236
9.2 Nuclear Magnetic Resonance Spectroscopy 236
9.2.1 Theory of Nuclear Magnetic Resonance 236
9.2.2 Nuclear Energy Levels in an External Magnetic Field 237
9.2.3 Magnetic Resonance 239
9.2.4 Classical Model NMR Absorption 239
9.2.5 Relaxation Processes 241
9.3 NMR Spectrometers 241
9.3.1 NMR Spectrum 242
9.4 Environmental Effects 242
9.4.1 Chemical Shift 242
9.4.2 Diamagnetic Anisotropy and Chemical Shift 246
9.4.3 Spin-spin Coupling 247
9.4.4 Interpretation of First Order Spectra 248
9.4.5 Simplification of Complex Spectra 250
9.5 Nuclear Magnetic Resonance Spectroscopy of Nuclei other than Hydrogen 251
9.6 Carbon-13 NMR Spectroscopy 251
9.7 Applications of NMR Spectroscopy 253
9.8 Fourier Transform NMR Spectroscopy 253
9.9 Magic Angle Spinning NMR Spectroscopy 254
9.10 Electron Spin Resonance Spectroscopy 255
9.10.1 ESR Spectrometer 255
9.10.2 ESR Spectrum 256
9.10.3 Hyperfine and Fine Structures in ESR Spectra 257
9.10.4 Double Resonance 259
9.10.5 Applications of ESR Spectroscopy 259
10: Mass Spectrometry 262
10.1 Introduction 262
10.2 Principle 262
10.3 Mass Spectrometer 263
10.3.1 Sample Inlet 264
10.3.2 Ionization Source and Acceleration Chamber 265
10.3.3 Mass Analyser 265
10.3.4 Detector 266
10.3.5 Recording System 266
10.4 Ionization Methods 266
10.4.1 Electron Impact Ionization (EI) 267
10.4.2 Spark Ionization 267
10.4.3 Chemical Ionization (CI) 267
10.4.4 Field Ionization (FI) 269
10.4.5 Field Desorption 269
10.4.6 Fast Atom/Ion Bombardment (FAB) 269
10.4.7 Electrospray Ionization (ESI) 270
10.4.8 Matrix-assisted Laser Desorption/Ionization (MALDI) 271
10.5 Other types of Mass Spectrometers 271
10.5.1 Quadrupole Mass Analyser or Spectrometer 271
10.5.2 Time of Flight Mass Spectrometer 272
10.5.3 Ion Trap Analyser (Spectrometer) 272
10.5.4 Fourier Transform Mass Spectrometer 273
10.6 Tandem Mass Spectrometry 27
10.7 Interpretation of Mass Spectrum 275
10.8 Applications 277
10.8.1 Molecular Weight Determination 278
10.8.2 Determination of Molecular Formula 280
10.8.3 Structural Information 284
10.8.4 Identification of the Sample Compound 285
10.8.5 Applications in the Study of Proteins and Nucleic Acids 286
11: X-ray Methods 288
11.1 Introduction 288
11.2 X-ray Spectroscopic Instruments 288
11.2.1 Production of X-rays by Electron Bombardment 288
11.2.2 X-rays from Radioactive Sources 292
11.2.3 Filters 292
11.2.4 Monochromator, Collimator and Goniometer Assembly 292
11.2.5 Detectors 293
11.3 Classification of X-ray Methods 293
11.4 X-ray Absorption Spectroscopy 294
11.4.1 Absorption of X-rays 294
11.4.2 X-ray Absorption Spectrometer 295
11.4.3 Applications of X-ray Absorption Spectrometry 295
11.5 X-ray Fluorescence Spectroscopy 296
11.5.1 Fluorescence Emission of X-rays 296
11.5.2 X-ray Fluorescence Spectrometer 297
11.5.3 Applications of X-ray Fluorescence Spectroscopy 299
11.6 X-ray Emission and Electron Probe Microanalysis 299
11.7 X-ray Diffraction Methods 300
12: Separation Methods 303
12.1 An Overview of Separation Methods 303
12.2 Solvent Extraction 304
12.2.1 Principles of Liquid-liquid Extraction 304
12.2.2 Selectivity of Extraction 305
12.2.3 Parameters Affecting the Extraction Process 306
12.2.4 Extraction Methods 306
12.2.5 Modes of Extraction 311
12.3 Aqueous Two-phase Extraction 314
12.3.1 Aqueous Two-phase Systems 314
12.3.2 Theoretical Principles of Aqueous Two-phase Extractions 315
12.3.3 Aqueous Two-phase Extraction Process 316
12.4 Reversed Micellar Extraction 316
12.5 Supercritical Fluid Extraction 317
12.6 Solid Phase Extraction 318
12.6.1 Solid Phase Micro Extraction 319
12.7 Ion Exchange Separation 319
12.7.1 Ion Exchangers 319
12.7.2 Ion Exchange Equilibrium 320
12.7.3 Capacity of Ion Exchangers 321
12.7.4 Regeneration of Ion Exchangers 322
12.8 Filtration 322
12.9 Membrane Separation Techniques 323
12.9.1 Theory of Membrane Separation 324
12.9.2 Retention Coefficient 324
12.9.3 Factors Affecting Membrane Separation 325
12.9.4 Membranes and their Characteristics 326
12.9.5 Equipment for Membrane Separation 326
12.9.6 Membrane Separation Methods 327
12.10 Crystallization 330
12.11 Precipitation 331
12.12 Lyophilization 331
13: Chromatographic Separations 335
13.1 Introduction 335
13.2 Classification of Chromatographic Methods 335
13.3 Column Chromatography 337
13.3.1 Principle of Separation in Column Chromatography 337
13.4 Chromatographic Parameters 339
13.4.1 Retention Time 339
13.4.2 Retention Volume 340
13.4.3 Relative Retention 340
13.4.4 Column Efficiency 341
13.4.5 Resolution 342
13.4.6 Peak Asymmetry 343
13.4.7 Broadening of Chromatographic Peaks 343
13.4.8 Optimization of Column Performance 345
13.4.9 Applications of Chromatography 346
13.5 Liquid Chromatography 347
13.5.1 Practice of Liquid Chromatography 347
13.6 Adsorption Chromatography 349
13.7 Partition Chromatography 350
13.7.1 Normal Phase Chromatography 350
13.7.2 Reversed Phase Chromatography 350
13.7.3 Hydrophobic Interaction Chromatography 351
13.8 Ion Exchange Chromatography 352
13.8.1 Ion Chromatography (IC) 354
13.9 Size Exclusion Chromatography (SEC) 355
13.10 Affinity Chromatography 360
13.11 High Performance Liquid Chromatography 361
13.11.1 Principle 362
13.11.2 HPLC Instrument 362
13.11.3 Practice of HPLC 366
13.11.4 Applications of HPLC 367
13.11.5 HPLC-Mass Spectrometry (HPLC-MS) 368
13.12 Supercritical Fluid Chromatography (SCFC) 369
13.12.1 Supercritical Fluid Solvents and Their Properties 369
13.12.2 SCFC Instrument 370
13.13 Gas Chromatography 371
13.13.1 Principle 371
13.13.2 GC Instrument 371
13.13.3 Hyphenated or Coupled Chromatographic Techniques 376
13.13.4 Practice of GC 378
13.13.5 Qualitative Analysis by Gas Chromatography 380
13.13.6 Quantitative Analysis by Gas Chromatography 381
13.14 Planar Chromatographic Techniques 381
13.14.1 Paper Chromatography (PC) 381
13.14.2 Thin Layer Chromatography (TLC) 383
13.14.3 Two-dimensional Planar Chromatography 385
13.14.4 High Performance Thin Layer Chromatography (HPTLC) 386
13.14.5 Applications of Planar Chromatographic Techniques 386
13.14.6 Developments in Planar Chromatographic Techniques 387
14: Electrophoresis and Related Techniques of Separation 391
14.1 Introduction 391
14.2 Electrophoresis 391
14.2.1 Free Solution Electrophoresis 392
14.2.2 Zone Electrophoresis 393
14.2.3 Polyacrylamide Gel Electrophoresis (PAGE) 393
14.2.4 Native Gel Electrophoresis 394
14.2.5 Disc Gel Electrophoresis 396
14.2.6 Sodium Dodecyl Sulphate-polyacrylamide Gel Electrophoresis (SDS-PAGE) 397
14.2.7 Agarose Gel Electrophoresis 398
14.2.8 Parameters Affecting Gel Electrophoretic Separations 398
14.2.9 Detection of Proteins and Nucleic Acids in Electrophoresis Gels 398
14.2.10 Pulsed Field Gel Electrophoresis (PFGE) 399
14.2.11 Applications of Electrophoresis Techniques 400
14.3 Immunoelectrophoresis 400
14.4 Capillary Electrophoresis 400
14.4.1 Micellar Electrokinetic Capillary Chromatography 402
14.4.2 Capillary Gel Electrophoresis 403
14.4.3 Capillary Electrochromatography 403
14.5 Isoelectric Focusing 404
14.6 Two-dimensional Electrophoresis 406
14.7 Isotachophoresis 406
15: Centrifugation 409
15.1 Introduction 409
15.2 Centrifugal Force 409
15.3 Principles of Centrifugal Sedimentation 411
15.4 Centrifuges 414
15.4.1 Rotors 415
15.5 Centrifugation Techniques 418
15.6 Differential Centrifugation 418
15.7 Density Gradient Centrifugation 419
15.7.1 Sample Application and Harvesting Samples from Gradients 421
15.7.2 Density Gradient Centrifugation Techniques 422
15.8 Centrifugal Elutriation 423
15.9 Ultracentrifuge 423
15.9.1 Analytical Ultracentrifuge 423
15.9.2 Applications of Analytical Ultracentrifuge 424
15.9.3 Determination of Molecular Weight of Macromolecules 424
15.9.3 Determination of Purity of Macromolecules 426
15.9.4 Study of Conformation Changes in Macromolecules 426
15.10 Preparative Ultracentrifuge 426
16: Electroanalytical Methods 428
16.1 Introduction 428
16.2 Classification of Electroanalytical Techniques 428
16.3 Conductometry 429
16.3.1 Measurement of Conductance 430
16.3.2 Applications of Conductance Measurements 431
16.4 Conductance Titrations 432
16.4.1 Acid-base Reactions 433
16.4.2 Displacement Titrations 434
16.4.3 Precipitation Titrations 435
16.4.4 Complex-formation Reactions 435
16.4.5 Titrations in Non-aqueous Media 436
16.5 Oscillometric or High-frequency Titrations 436
16.6 Principles of Electrogravimetry and Coulometry 437
16.7 Electrogravimetry 437
16.8 Coulometry 438
16.8.1 Constant Potential Coulometry 438
16.8.2 Constant Current Coulometry 439
16.9 Potentiometry 442
16.9.1 Thermodynamic Significance of Electrode Potentials 443
16.9.2 Indicator Electrodes 444
16.9.3 Reference Electrodes 446
16.9.4 EMF Measurement 447
16.9.5 Standard Weston Cadmium Cell 448
16.10 Applications of EMF Measurements 449
16.10.1 Determination of pH by Glass Electrode 449
16.10.2 pH Titrations 450
16.10.3 Potentiometric Titrations 451
16.11 Ion Selective Electrodes 453
16.11.1 Different Types of Ion Selective Electrodes 453
16.12 Polarography 454
16.12.1 Quantitative Analysis by Polarography 458
16.12.3 Modern Polarographic Techniques 459
16.13 Amperometric Titrations 461
16.13.1 Amperometric Titrations with One Polarizable Indicator Electrode 462
16.13.2 Biamperometric Titrations 464
16.13.3 A Few Important Applications of Amperometry 465
16.13.4 Oxygen Sensor 466
16.13.5 Biosensors 466
17: Thermal Analytical Methods 470
17.1 Introduction 470
17.2 Thermogravimetry (TG) 470
17.2.1 TG Instrument 471
17.2.2 Thermogram 472
17.2.3 Applications of Thermogravimetry 473
17.3 Differential Thermal Analysis (DTA) 476
17.3.1 DTA Instrument 476
17.3.2 DTA Thermogram 477
17.4 Differential Scanning Calorimetry (DSC) 478
17.4.1 DSC Instrument 478
17.4.2 Applications of DTA and DSC 479
17.5 Thermomechanical Analysis (TMA) 483
17.5.1 TMA Instrument 483
17.5.2 Applications of TMA 484
17.6 Dynamic Mechanical Analysis (DMA) 485
17.6.1 DMA Instrument 485
17.6.2 DMA Applications 486
17.7 Evolved Gas Analysis 487
17.7.1 Pyrolysis Gas Chromatograph Instrument 487
18: Radiochemical Methods of Analysis 490
18.1 Introduction 490
18.2 Origin of Radioactivity 490
18.2.1 Decay Modes of Radioactive Isotopes 491
18.2.2 Kinetics of Radioactive Decay Process 492
18.2.3 Units of Radioactivity 493
18.3 Measurement of Radioactivity 493
18.3.1 Detectors Based on Ionization 494
18.3.2 Detectors Based on Photo Effect 497
18.4 Detector Based on Chemical Reaction 498
18.5 amplifiers and Other Electronic Equipment 498
18.6 Pulse Height Analyser 498
18.7 Analytical Applications of Radioisotopes 499
18.7.1 Isotope Dilution Method 499
18.7.2 Activation Analysis 500
18.7.3 Radioimmuno Assay 502
18.7.4 Autoradiography 504
19: Surface Analytical Methods 506
19.1 Introduction 506
19.2 Classification of Surface Analytical Methods 506
19.3 Methods Based on Adsorption-desorption of Probe Molecules 507
19.3.1 Physisorption 507
19.3.2 Chemisorption 510
19.4 Vibrational Spectroscopic Techniques for Surface Studies 510
19.4.1 IR Spectroscopy 511
19.4.3 Electron Energy Loss Spectroscopy 512
19.4.4 Reflection-absorption Infrared Spectroscopy 513
19.5 Electronic Spectroscopic Methods 513
19.5.1 Electron Spectroscopy for Chemical Analysis 514
19.5.2 Auger Electron Spectroscopy 519
19.5.3 Ion Scattering Spectrometry 521
19.5.4 Secondary Ion Mass Spectrometry 522
19.6 X-ray Methods 524
19.7 Thermal Methods 524
19.7.1 Temperature Programmed Desorption 524
19.7.2 Temperature Programmed Reduction 528
19.7.3 Desorption Studies by TG, DTA and DSC 529


Dr B Sivasankar is a Visiting Professor, Department of Chemistry, College of Engineering Guindy, Anna University, Chennai. He has more than 35 years of active teaching and research experience. He specializes in Analytical and Inorganic Chemistry and has published numerous articles in national and international journals of repute.

A Ph.D in Analytical and Inorganic Chemistry from the University of Madras, Dr Sivasankar has guided numerous research scholars in specialised areas of catalysis and biocatalysis.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.