Sparrow / Abraham / Gorman | Advances in Heat Transfer | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 46, 268 Seiten

Reihe: Advances in Heat Transfer

Sparrow / Abraham / Gorman Advances in Heat Transfer


1. Auflage 2014
ISBN: 978-0-12-800331-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band Volume 46, 268 Seiten

Reihe: Advances in Heat Transfer

ISBN: 978-0-12-800331-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Advances in Heat Transfer fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals or texts. The articles, which serve as a broad review for experts in the field, will also be of great interest to non-specialists who need to keep up-to-date with the results of the latest research. This serial is essential reading for all mechanical, chemical and industrial engineers working in the field of heat transfer, graduate schools or industry. - Never before have so many authorities provided both retrospective and current overviews.

Sparrow / Abraham / Gorman Advances in Heat Transfer jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Advances in Heat Transfer;2
3;Advances in Heat Transfer;4
4;Copyright;5
5;Contents;6
6;List of Contributors;8
7;Preface;10
8;On the Computational Modelling of Flow and Heat Transfer in In-Line Tube Banks;12
8.1;Greek Symbols;14
8.2;Acronyms;14
8.3;1. Introduction;15
8.4;2. Computational and Modelling Schemes;18
8.4.1;2.1 Discretization practices and boundary conditions;18
8.4.2;2.2 Turbulence modelling;21
8.5;3. Fully Developed Flow through In-Line Tube Banks;24
8.5.1;3.1 Domain-dependence and mesh-density issues for the LES treatment;24
8.5.2;3.2 Effects of pitch:diameter ratio;28
8.5.3;3.3 Effects of Reynolds number;31
8.5.4;3.4 Performance of URANS models for a square array for P/D=1.6;33
8.6;4. Modelling the Complete Experimental Assembly of Aiba et al. [13];40
8.6.1;4.1 Scope of the study;40
8.6.2;4.2 Computed behaviour for the Test Section of Aiba et al. [13];40
8.7;5. Thermal Streak Dispersion in a Quasi-Industrial Tube Bank;45
8.7.1;5.1 Rationale and scope;45
8.7.2;5.2 Streamwise fully developed flow;46
8.7.3;5.3 Computations of the complete industrial tube bank with thermal spike;48
8.8;6. Concluding Remarks;54
8.9;Acknowledgments;55
8.10;References;56
9;Developments in Radiation Heat Transfer: A Historical Perspective;58
9.1;Greek Letters;59
9.2;Subscripts;60
9.3;1. Introduction;60
9.4;2. Early Concepts of Light (Radiation);61
9.5;3. The Nineteenth Century;62
9.6;4. Quantum Theory and Planck's Radiation Law;63
9.6.1;4.1 Planck's blackbody function;64
9.6.2;4.2 Limiting cases of the Planck's law;65
9.6.3;4.3 Stefan–Boltzmann law;66
9.7;5. Radiant Heat Exchange between the Surfaces of Solids;67
9.7.1;5.1 Radiation heat exchange in a gray, diffuse enclosure;69
9.7.2;5.2 Wavelength-dependent radiation properties;72
9.7.3;5.3 Radiation exchange between nonideal surfaces;72
9.7.4;5.4 Conjugate heat transfer: combined radiation with conduction and convection at boundaries;75
9.7.4.1;5.4.1 Combined conduction and radiation;75
9.7.4.2;5.4.2 Radiation combined with convection at boundaries;76
9.7.4.3;5.4.3 Radiation combined with conduction and convection;77
9.8;6. Radiative Transfer in a Participating Medium;77
9.8.1;6.1 Radiative transfer and radiant energy equation;78
9.8.2;6.2 Radiative transfer under radiative equilibrium;82
9.9;7. Interaction of Radiation with Conduction and Advection in Participating Media;84
9.9.1;7.1 Interaction of conduction with radiation;84
9.9.2;7.2 Combined conduction, advection and radiation;86
9.9.3;7.3 Interaction of radiation with turbulent flow;88
9.9.4;7.4 Interaction between combustion and radiation;89
9.10;8. Future Challenges;90
9.11;Acknowledgments;91
9.12;References;91
10;Convective Heat Transfer Enhancement: Mechanisms, Techniques, and Performance Evaluation;98
10.1;Nomenclature
;100
10.2;Greek Alphabets;100
10.3;Subscripts;100
10.4;Abbreviations;101
10.5;1. Introduction;101
10.5.1;1.1 Background;101
10.5.2;1.2 Introduction to field synergy principle;103
10.5.3;1.3 Indicators of synergy;108
10.5.4;1.4 Techniques for enhancing single-phase convective heat transfer;112
10.5.5;1.5 Performance evaluation methods for enhancing techniques;122
10.6;2. Verifications of FSP;125
10.6.1;2.1 Verification of FSP deduction 1;125
10.6.2;2.2 Verification of FSP deduction 2;129
10.6.3;2.3 Verification of FSP for turbulent heat transfer;132
10.7;3. Contributions of FSP to the Development of Convective Heat Transfer Theory;134
10.7.1;3.1 FSP Revealing the condition for velocity to play a role in convective heat transfer;134
10.7.2;3.2 FSP revealing the upper limit of exponent m in the correlation of Nu~Rem;136
10.7.3;3.3 FSP explaining fundamental reasons of characteristics for some basic and enhanced heat transfer cases;136
10.7.3.1;3.3.1 Laminar fully developed heat transfer in tube: Nuq.NuT;136
10.7.3.2;3.3.2 Very high heat transfer coefficient at stagnation point of impinging jet;139
10.7.3.3;3.3.3 Role of fins;139
10.7.3.4;3.3.4 Heat transfer characteristics of flow across tube banks;139
10.7.3.5;3.3.5 Heat transfer characteristics of flow across tube bank with H-type fins;141
10.7.3.6;3.3.6 Heat transfer characteristics of flow across vortex generators;144
10.7.3.7;3.3.7 The role of nanoparticles in heat transfer enhancement;146
10.7.3.8;3.3.8 Enhancement of heat transfer in electronic devices;147
10.7.3.9;3.3.9 Enhancement of heat transfer in solar air heater;148
10.7.3.10;3.3.10 Improvement of thermal performance of pulse tube refrigerator;151
10.7.4;3.4 FSP guiding the developments of enhancing techniques with high efficiency;151
10.7.4.1;3.4.1 Design of slotted fin surface with “front sparse and rear dense” rule;151
10.7.4.2;3.4.2 Design of an alternating elliptical axis tube;158
10.7.4.3;3.4.3 Design of plain fin with radiantly arranged winglets around each tube;160
10.7.4.4;3.4.4 Improvement of bipolar channel for proton exchange membrane fuel cell;165
10.8;4. Performance Evaluation of Enhanced Structures;171
10.8.1;4.1 A unified log–log plot for performance evaluation;172
10.8.1.1;4.1.1 Basic equations for constructing performance evaluation plot;172
10.8.1.2;4.1.2 Composition of the NPEP;177
10.8.1.3;4.1.3 Contours of the working lines for the three constraints;179
10.8.2;4.2 Some typical applications examples of NPEP;179
10.8.2.1;4.2.1 Example of enhanced technique under identical pumping power constraint;179
10.8.2.2;4.2.2 Example of enhanced technique under identical pressure drop constraint;179
10.8.2.3;4.2.3 Example of enhanced technique under identical flow rate constraint;181
10.8.2.4;4.2.4 Comparison of enhanced technique with wavy channel as a reference;184
10.8.2.5;4.2.5 Comparison of helical baffle with segmental baffle of shell-side heat transfer in shell-and-tube heat exchangers;186
10.8.3;4.3 A comprehensive comparison study on techniques adopted in compact heat exchangers by the NPEP;187
10.9;5. Conclusions;188
10.10;Acknowledgments;191
10.11;References;191
11;Recent Analytical and Numerical Studies on Phase-Change Heat Transfer;198
11.1;1. Introduction;199
11.2;2. Surface Characteristics;201
11.2.1;2.1 Wettability;201
11.2.2;2.2 Roughness;202
11.3;3. Onset of Bubble Nucleation;204
11.3.1;3.1 Homogeneous nucleation;205
11.3.1.1;3.1.1 Gibbs free energy analysis;205
11.3.1.2;3.1.2 Availability analysis;206
11.3.2;3.2 Heterogeneous nucleation;208
11.3.2.1;3.2.1 Hsu's classical theory;209
11.3.2.2;3.2.2 Effects of contact angle;209
11.3.2.3;3.2.3 Effects of roughness;212
11.3.2.4;3.2.4 Effects of electric field;215
11.3.2.4.1;3.2.4.1 Homogeneous Nucleation;215
11.3.2.4.2;3.2.4.2 Heterogeneous Nucleation;218
11.4;4. Thermodynamic Analyses for Onset of Dropwise Condensation;219
11.4.1;4.1 Droplet condensation in pure vapor;219
11.4.2;4.2 Droplet condensation in moist air;220
11.5;5. Level-Set and VOF Simulations of Boiling and Condensation Heat Transfer;224
11.5.1;5.1 Boiling;224
11.5.2;5.2 Condensation;227
11.6;6. Lattice Boltzmann Simulations of Boiling Heat Transfer;231
11.6.1;6.1 The improved phase-change lattice Boltzmann model;231
11.6.1.1;6.1.1 The modified pseudo-potential LBM model for multiphase flows;232
11.6.1.2;6.1.2 Energy equation model;234
11.6.2;6.2 Bubble growth from a point heat source in pool boiling;235
11.6.3;6.3 Bubble growth from a point heat source in flow boiling;237
11.6.4;6.4 Bubble growth from multiple cavities in pool boiling;239
11.7;7. Lattice Boltzmann Simulations of Condensation Heat Transfer;243
11.7.1;7.1 Filmwise condensation;243
11.7.2;7.2 Dropwise condensation;246
11.8;8. CHF Models in Pool Boiling;249
11.8.1;8.1 Effects of contact angle;249
11.8.2;8.2 Effects of roughness;251
11.9;9. Concluding Remarks;255
11.10;Acknowledgments;255
11.11;References;256
12;Author Index;260
13;Subject Index;264



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.