Srivastava | Bioenergy Research | Buch | 978-1-119-77209-5 | sack.de

Buch, Englisch, 336 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 735 g

Srivastava

Bioenergy Research

Evaluating Strategies for Commercialization and Sustainability

Buch, Englisch, 336 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 735 g

ISBN: 978-1-119-77209-5
Verlag: Wiley


In diesem Buch werden die derzeit verfügbaren Produktionstechnologien von Bioenergie vorgestellt und bewertet, und zwar für Bioethanol, Biobutanol, Biomethanol, Bioöl, Biowasserstoff, Biogas und Biomethan. Die neuesten Technologieentwicklungen und ihre kommerzielle Umsetzbarkeit werden analysiert. Darüber hinaus beschreiben die Autoren die derzeitigen Rückschritte, diesbezügliche Korrekturmöglichkeiten, die Zeitspanne für Verbesserungen und die maximal anzunehmenden Auswirkungen auf die Markteinführung verschiedener Bioenergie-Optionen. In jedem Kapitel werden vergleichende Strategien für verschiedene Biokraftstofftechnologien vorgestellt, aktuelle Herausforderungen und nachhaltige Lösungen diskutiert, und am Ende des Buches präsentieren die Herausgeber eine vergleichende Bewertung.
Srivastava Bioenergy Research jetzt bestellen!

Weitere Infos & Material


List of Contributors xiii

Foreword xvii

Acknowledgments xix

Biofuels Production Technologies: Recent Advancement xxi

1 Role of Enzymes in Biofuel Production 1
Ashok Kumar Yadav, Surabhi Pandey, Abhishek Dutt Tripathi and Veena Paul

1.1 Introduction 1

1.2 Biofuel Classification 2

1.3 Enzymes Role in Biofuels 3

1.4 Enzymatic Reaction 4

1.5 Enzyme Recovery and Reuse 4

1.6 Enzyme Immobilization 4

1.6.1 Adsorption on Physical Surface: Physical Adsorption 5

1.6.2 Ionic Bonding 5

1.6.3 Entanglement or Envelopment 6

1.6.4 Cross-Linkage 6

1.7 Unique Techniques of Enzyme Immobilization 6

1.8 Application of Various Enzymes in Biofuel Production 6

1.8.1 Amylases 6

1.8.2 Proteases 7

1.8.3 Dehydrogenases 7

1.8.4 Lipase 8

1.9 Biofuel Production Process 8

1.9.1 Bioethanol 8

1.9.2 Biohydrogen 11

1.9.3 Biomethane 11

1.9.4 Biodiesel 12

1.10 Production of Biodiesel by Enzymatic Catalysis 14

1.10.1 Batch Method 15

1.10.2 Continuous Stirred-Tank Method 15

1.10.3 Packed-Bed Columns 15

1.11 Future Prospects 16

1.12 Conclusion 16

References 17

2 Microbial Technology for Biofuel Production 19
Spriha Raven, Sashita Bindu Ekka, Stephen Edward Chattree, Shivani Smita Sadanand, Lipi Rina and Archana Tiwari

2.1 Introduction 19

2.2 Microbial Biofuel 20

2.3 Microbial Pathway for Biofuel Production 21

2.3.1 Sugar Conversion to Alcohols/Glycolytic Pathway 21

2.3.2 Butanol Synthetic Pathway/ABE Pathway 21

2.3.3 2-Keto Acid Pathways for Alcohols 22

2.3.4 2-Keto Acid Pathway for Iso-Butanol 22

2.3.5 Protein into Alcohol 22

2.4 Algal Biofuel Production 22

2.4.1 Microalgal Cultivation 23

2.4.2 Microalgae Harvesting 25

2.4.3 Conversion Techniques for Algal Biofuel Production 25

2.4.3.1 Thermochemical Conversion 25

2.4.3.2 Biochemical Conversion 27

2.4.3.3 Transesterification (or Chemical Conversion) 28

2.4.3.4 Photosynthetic Microbial Fuel Cell 28

2.5 Bioethanol 28

2.6 Biodiesel 29

2.6.1 Stages of Biodiesel Production 31

2.6.1.1 Cultivation 31

2.6.1.2 Harvesting/Dewatering 32

2.6.1.3 Oil Extraction 32

2.6.1.4 Conversion 33

2.7 Biohydrogen 33

2.7.1 Stages of Biohydrogen Production 34

2.7.1.1 Biophotolysis 34

2.7.1.2 Photo Fermentation 36

2.7.1.3 Dark Fermentation 36

2.7.1.4 Two-Step Process (a Combination of Photo and Dark Fermentation) 37

2.8 Applications of Biofuel Production 38

2.8.1 In Aviation 39

2.8.2 Maritime Industry 39

2.8.3 Heat 39

2.8.4 Backup Systems 39

2.8.5 Cleaning Oil Spills 39

2.8.6 Microalgae Applications 39

2.9 Conclusion 40

References 40

3 Biohydrogen Production from Cellulosic Waste Biomass 47
Enosh Phillips

3.1 Introduction 47

3.2 History of Hydrogen Fuel 48

3.3 Biohydrogen Fuel Cell 48

3.4 Cellulosic Biohydrogen Production from Waste Biomass 50

3.4.1 Biohydrogen Production from Wheat Straw and Wheat Bran 51

3.4.2 Biohydrogen Production from Corn Stalk 54

3.4.3 Biohydrogen from Rice Straw and Rice Bran 55

3.4.4 Biohydrogen Production from Food Waste 57

3.4.5 Biohydrogen from Bagasse 58

3.4.6 Biohydrogen Production from Mushroom CultivationWaste 60

3.4.7 Biohydrogen Production from Sweet Potato Starch Residue 61

3.4.8 Biohydrogen from De-Oiled Jatropha 61

3.4.9 Biohydrogen Production Banyan Leaves and Maize Leaves 62

3.5 Conclusion 62

References 64

4 Strategies for Obtaining Biofuels Through the Fermentation of C5-Raw Materials: Part 1 69
Alexandre S. Santos, Lílian A. Pantoja, Mayara C. S. Barcelos, Kele A. C. Vespermann and Gustavo Molina

4.1 The Nature of Pentoses 69

4.2 Alcoholic Fermentation of C5 71

4.3 Lipid Biosynthesis from C5 79

4.4 Conclusion 82

References 82

5 Strategies for Obtaining Biofuels Through the Fermentation of C5-Raw Materials: Part 2 85
Alexandre Soares dos Santos, Lílian Pantoja, Kele A. C. Vespermann, Mayara C. S. Barcelos and Gustavo Molina

5.1 Introduction 85

5.2 Ethanol Production Using C5-Fermenter Strain 86

5.2.1 Pentose-Fermenting Microorganisms 86

5.3 Microbial Lipid Production by C5-Fermenter Strains for Biofuel Advances 90

5.4 Concluding Remarks 96

References 96

6 An Overview of Microalgal Carotenoids: Advances in the Production and Its Impact on Sustainable Development 105
Rahul Kumar Goswami, Komal Agrawal and Pradeep Verma

6.1 Introduction 105

6.1.1 Interaction and Understanding of Carotenoid 106

6.1.2 Differentiation between Natural or Chemically Synthesized Carotenoids 106

6.2 Diverse Category of Carotenoids 107

6.2.1 ß-Carotene 107

6.2.2 Lutein 107

6.2.3 Astaxanthin 108

6.2.4 Canthaxanthin 108

6.3 Microalgae Prospects for the Production of Carotenoids 109

6.3.1 Bio-Formation of Carotenoids inside Microalgae/Carotenogenesis inside Microalgae Cells 110

6.3.2 Potent Microalgae Strain for Carotenoid Production 111

6.3.2.1 Haematococcus pluvialis 112

6.3.2.2 Dunaliella salina. 113

6.3.2.3 Other Microalgae Species Used for the Production of Carotenoids 113

6.3.3 Enhancement of Carotenoid Productivity by Optimizing Various Physiological Condition/Physiological Approaches for Enhancement of Carotenoid Production inside Microalga Cells 115

6.3.3.1 Role of Nutrient Deficient Stress for Carotenogenesis 115

6.3.3.2 Lights and Temperature Stress for Induction of Carotenogenesis 116

6.3.3.3 Role of Oxidative Stress in Carotenogenesis 116

6.3.3.4 Approaches which Enhance Carotenogenesis by Heterotrophic and Mixotrophic Cultivation of Microalgae 117

6.3.3.5 Cohesive Cultivation System in Microalgae for Enhancement of Carotenoid 117

6.3.4 Metabolic and Genetic Modification in Microalgae for Enhancement of Carotenoid Production 118

6.4 Significance of Carotenoid in Human Health 119

6.4.1 Anti-Inflammatory and Antioxidant Properties 119

6.4.2 Anticancerous Activity and their Potential of a Generation of an Immune Response 119

6.4.3 As Provitamin 121

6.4.4 Other Significance of Microalgae Carotenoids 121

6.5 Opportunities and Challenges in Carotenoid Production 121

6.6 Present Drifts and Future Prospects 122

6.7 Conclusion 123

References 123

7 Microbial Xylanases: A Helping Module for the Enzyme Biorefinery Platform 129
Nisha Bhardwaj and Pradeep Verma

7.1 Introduction 129

7.2 Raw Material for Biorefinery 130

7.3 Structure of Lignocellulosic Plant Biomass 132

7.4 The Concept of Biorefinery 132

7.5 Role of Enzymes in Biorefinery 134

7.5.1 In Biological Pretreatment 134

7.5.2 In Enzymatic Hydrolysis 135

7.6 Enzyme Synergy: A Conceptual Strategy 136

7.7 Factors Affecting Biological Pretreatment 137

7.8 Advantages of Xylanases from Thermophilic Microorganisms in Biorefinery 138

7.9 The Products of Biorefinery 138

7.9.1 Bioethanol 138

7.9.2 Biobutanol 141

7.9.3 Hydrogen 142

7.10 Molecular Aspects of Enzymes in Biorefinery 142

7.11 Conclusion 143

References 143

8 Microbial Cellulolytic-Based Biofuel Production 153
S.M. Bhatt

8.1 Introduction 153

8.2 Biofuel Classifications 153

8.2.1 Generations of Biofuel 153

8.2.2 Bioethanol Production Using Lignocellulose 154

8.2.2.1 Polymeric Lignocellulosic Composition 157

8.3 Bioprocessing of Bagasse for Bioethanol Production 157

8.3.1 Enzymatic Hydrolysis and Cellulose Structure 159

8.3.1.1 Cellulolytic Microbes 159

8.4 Microbial Cellulase 160

8.5 Mode of Economical Production of Enzyme 161

8.6 Structure of Cellulase 163

8.6.1 CBH1 Structure 164

8.6.2 Thermophilic Cellulase Enzyme 164

8.7 Family Classification 164

8.8 Consortia-Based Cellulase Production 165

8.9 Cellulase Production SSF Mode 165

8.10 Concluding Remarks 166

Declarations 166

Acknowledgment 166

References 166

9 Recent Developments of Bioethanol Production 175
Arla Sai Kumar, Sana Siva Sankar, S K Godlaveeti, Dinesh Kumar, S Dheiver, Ram

Prasad, Chandrasekhar Nb, Thi Hong Chuong Nguyen and Quyet Van Le

9.1 Introduction 175

9.2 Emerging Techniques in Bioethanol Production 178

9.3 Advancement in Distillation and Waste-Valorization Techniques 179

9.3.1 Heat Integrated Distillation 179

9.3.2 Membrane Technology 180

9.3.2.1 Membrane-Assisted Vapor Stripping 180

9.3.2.2 Combining Extractive and Azeotropic Distillation 180

9.3.2.3 Feed-Splitting 182

9.3.2.4 Ohmic-Assisted Hydro Distillation (OADH) 182

9.4 Green Extraction of Bioactive Products 182

9.4.1 Pulsed Electric Fields (PFE) 183

9.4.2 High-Voltage Electrical Discharges 184

9.4.3 Enzyme-Assisted Extraction 184

9.4.4 Ultrasound-Assisted Extraction 187

9.4.5 Microwave-Assisted Extraction 188

9.4.6 Subcritical Fluid Extraction 188

9.4.7 Ohmic-Assisted Extraction 188

9.5 Advancement in Bioethanol Production from Microalgae 188

9.5.1 Surface Methods 188

9.5.2 Ligno Celluloic Bio Ethanol Production 189

9.5.2.1 Membrane Technology 189

9.5.2.2 Microbial Technique 191

9.5.2.3 Brown Algae 191

9.5.2.4 Integrated Processes 191

9.5.2.5 Advances in Bioethanol Production from Agroindustrial Waste 192

9.6 Fermentation Technique Advances 192

9.6.1 Synthesis from Municipal Wastes 193

9.6.1.1 Waste Paper 193

9.6.1.2 Coffee Residue 194

9.6.1.3 Food Waste 194

9.6.1.4 Solid Waste 195

9.7 Conclusion 196

References 198

10 Algal Biofuels - Types and Production Technologies 209
Sreedevi Sarsan and K. Vindhya Vasini Roy

10.1 Introduction 209

10.2 Algal Biofuels 210

10.3 Production of Algal Biofuels 211

10.3.1 Algae Cultivation Systems 211

10.3.1.1 Cultivation of Macroalgae 212

10.3.1.2 Cultivation of Microalgae 214

10.3.2 Harvesting of Algae 220

10.3.2.1 Harvesting of Macroalgae 220

10.3.2.2 Harvesting of Microalgae 220

10.3.3 Drying 222

10.3.4 Cell Disruption 222

10.3.5 Conversion into Biofuel 223

10.4 Types of Algal Biofuels 223

10.4.1 Biodiesel 224

10.4.2 Bioethanol 226

10.4.3 Biogas/Biomethane 228

10.4.4 Biomethanol 230

10.4.5 Biobutanol 230

10.4.6 Biohydrogen 230

10.4.7 Biosyngas 231

10.4.8 Green Diesel 231

10.5 Advantages of Algal Biofuels 232

10.5.1 Ease of Growth 232

10.5.2 Impact on Food 232

10.5.3 Environmental Impact 233

10.5.4 Algal by Products 234

10.5.5 Economic Benefits 234

10.6 Limitations 234

10.7 Conclusion 235

References 235

11 Biomethane Production and Advancement 245
Rajeev Singh, P K Mishra, Neha Srivastava, Akshay Shrivastav and K R Srivastava

11.1 Introduction 245

11.1.1 Process Involved in Biomethane Production 247

11.1.2 Purification of Biogas for Methane Production 249

11.2 Advancement Undergoing in the Process of Methane Production 250

11.2.1 Adsorption by Pressure Swing 250

11.3 Adsorption Methods 251

11.4 Separation by Membrane 251

11.5 Cryogenic Separation 252

11.6 Biological Technique for Purification of Biogas 252

11.6.1 Advantage and Limitation of Biomethane Production 252

11.6.2 Conclusion 253

References 254

12 Biodiesel Production and Advancement from Diatom Algae 261
Abhishek Saxena and Archana Tiwari

12.1 Introduction 261

12.2 Diatom Algae as a Source of Lipids 262

12.3 Biodiesel Production from Diatoms 265

12.4 Innovative Approaches toward Enhancement in Biodiesel Production and Challenges 267

12.5 Advancements in Diatoms-Based Biodiesel Production 269

12.6 Conclusion 270

Acknowledgments 272

References 272

13 Biobutanol Production and Advancement 279
Enosh Phillips

13.1 Introduction 279

13.2 Biobutanol 279

13.3 ABE Process for Biobutanol Production 281

13.4 Biobutanol Production by ABE 282

13.5 Substrate Used in Biobutanol Production 283

13.6 Advancement in Pretreatment Method 284

13.7 Microbial Engineering for Production Enhancement 284

13.8 Conclusion 285

Acknowledgment 286

References 286

Index 291


Neha Srivastava is a Research Scientist in the Department of Chemical Engineering and Technology, Indian Institute of Technology, Varanasi, India.

Manish Srivastava is a SERB-Research Scientist in the Department of Chemical Engineering and Technology, Indian Institute of Technology, Varanasi, India.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.