Stein | Einführungskurs Höhere Mathematik | Buch | 978-3-322-83032-6 | www.sack.de

Buch, Deutsch, 798 Seiten, Format (B × H): 210 mm x 279 mm, Gewicht: 1957 g

Stein

Einführungskurs Höhere Mathematik

Grundlagen - Beispiele - Aufgaben
Softcover Nachdruck of the original 1. Auflage 1981
ISBN: 978-3-322-83032-6
Verlag: Vieweg+Teubner Verlag

Grundlagen - Beispiele - Aufgaben

Buch, Deutsch, 798 Seiten, Format (B × H): 210 mm x 279 mm, Gewicht: 1957 g

ISBN: 978-3-322-83032-6
Verlag: Vieweg+Teubner Verlag


Springer Book Archives

Stein Einführungskurs Höhere Mathematik jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1 Die zwei Hauptprobleme der Infinitesimalrechnung.- 2 Funktionen und ihre Schaubilder; der Anstieg einer Geraden.- 3 Die Ableitung.- 4 Grenzwerte und stetige Funktionen.- 5 Berechnung von Ableitungen.- 6 Anwendungen der Ableitung.- 7 Das bestimmte Integral.- 8 Die Hauptsätze der Infinitesimalrechnung.- 9 Berechnung von Stammfunktionen.- 10 Berechnung und Anwendungen bestimmter Integrale.- 11 Anwendungen der Ableitung.- 12 Partielle Ableitungen.- 13 Bestimmte Integrale über ebene Gebiete.- 14 Reihen.- 15 Taylorsche Reihe und der Zuwachs einer Funktion.- 16 Das Moment einer Funktion.- 17 Mathematische Modelle.- 18 Bestimmte Integrale über räumliche Gebiete.- 19 Vektoralgebra.- 20 Die Ableitung einer Vektorfunktion.- 21 Integrale über skalare Felder und Vektorfelder.- 22 Die Greensche Formel und ihre Verallgemeinerungen.- 23 Das Vertauschen von Grenzwerten.- Anhang A Die reellen Zahlen.- A.1 Addition und Multiplikation (die Körperaxiome).- A.2 Die Ordnungsaxiome.- A.3 Rationale und irrationale Zahlen.- Übungen.- A.4 Vollständigkeit der reellen Zahlen.- Übungen.- Anhang B Analytische Geometrie.- B.1 Analytische Geometrie und die Abstandsformeln.- Übungen.- B.2 Die Gleichungen einer Geraden.- Übungen.- B.3 Kegelschnitte.- Übungen.- B.4 Kegelschnitte in Polarkoordinaten.- Übungen.- Anhang C Theorie der Grenzwerte.- C.1 Exakte Definition eines Grenzwertes.- Übungen.- C.2 Beweis einiger Theoreme über Grenzwerte.- Übungen.- Anhang D Partialbrüche.- D.1 Partialbruchzerlegungen von rationalen Zahlen.- Übungen.- D.2 Partialbruchzerlegung von rationalen Funktionen.- Übungen.- Anhang E Unbestimmte Integrale, Stammfunktionen.- Lösungen ausgewählter, ungeradzahliger Übungen und Testaufgaben.- 1 Die zwei Hauptprobleme der Infinitesimalrechnung.- 2 Funktionen undihre Schaubilder; der Anstieg einer Geraden.- 3 Die Ableitung.- 4 Grenzwerte und stetige Funktionen.- 5 Berechnung von Ableitungen.- 6 Anwendungen der Ableitung.- 7 Das bestimmte Integral.- 8 Die Hauptsätze der Infinitesimalrechnung.- 9 Berechnung von Stammfunktionen.- 10 Berechnung und Anwendung bestimmter Integrale.- 11 Anwendungen der Ableitung.- 12 Partielle Ableitungen.- 13 Bestimmte Integrale über ebene Gebiete.- 14 Reihen.- 15 Taylorsche Reihe und der Zuwachs einer Funktion.- 16 Das Moment einer Funktion.- 17 Mathematische Modelle.- 18 Bestimmte Integrale über räumliche Gebiete.- 19 Vektoralgebra.- 20 Die Ableitung einer Vektorfunktion.- 21 Integrale über skalare Felder und Vektorfelder.- 22 Die Greensche Formel und ihre Verallgemeinerung.- 23 Das Vertauschen von Grenzwerten.- Anhang A Die reellen Zahlen.- Anhang B Analytische Geometrie.- Anhang C Theorie der Grenzwerte.- Anhang D Partialbrüche.- Sachwortverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.