Stein / Newman | Spin Glasses and Complexity | E-Book | sack.de
E-Book

E-Book, Englisch, Band 4, 336 Seiten

Reihe: Primers in Complex Systems

Stein / Newman Spin Glasses and Complexity


Course Book
ISBN: 978-1-4008-4563-7
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band 4, 336 Seiten

Reihe: Primers in Complex Systems

ISBN: 978-1-4008-4563-7
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



No detailed description available for "Spin Glasses and Complexity".

Stein / Newman Spin Glasses and Complexity jetzt bestellen!

Weitere Infos & Material


Preface xi

Introduction: Why Spin Glasses? 1

- 1. Order, Symmetry, and the Organization of Matter 15

- 1.1 The Symmetry of Physical Laws 17

- 1.2 The Hamiltonian 23

- 1.3 Broken Symmetry 26

- 1.4 The Order Parameter 31

- 1.5 Phases of Matter 35

- 1.6 Phase Transitions 39

- 1.7 Summary: The Unity of Condensed Matter Physics 41

2. Glasses and Quenchied Disorder 43

- 2.1 Equilibrium and Non Equilibrium 43

- 2.2 The Glass Transition 45

- 2.3 Localization 49



3. Magnetic Systems 51

- 3.1 Spin 51

- 3.2 Magnetism in Solids 53

- 3.3 The Paramagnetic Phase 55

- 3.4 Magnetization 55

- 3.5 The Ferromagnetic Phase and Magnetic Susceptibility 57

- 3.6 The Antiferromagnetic Phase 59

- 3.7 Broken Symmetry and the Heisenberg Hamiltonian 59



4. Spin Glasses: General Features 63

- 4.1 Dilute Magnetic Alloys and the Kondo Effect 64

- 4.2 A New State of Matter? 65

- 4.3 Nonequilibrium and Dynamical Behavior 71

- 4.4 Mechanisms Underlying Spin Glass Behavior 74

- 4.5 The Edwards-Anderson Hamiltonian 78

- 4.6 Frustration 81

- 4.7 Dimensionality and Phase Transitions 83

- 4.8 Broken Symmetry and the Edwards-Anderson Order Parameter 85

- 4.9 Energy Landscapes and Metastability 86



5. The Infinite-Range Spin Glass 90

- 5.1 Mean Field Theory 90

- 5.2 The Sherrington-Kirkpatrick Hamiltonian 92

- 5.3 A Problem Arises 93

- 5.4 The Remedy 95

- 5.5 Thermodynamic States 97

- 5.6 The Meaning of Replica Symmetry Breaking 98

- 5.7 The Big Picture 109



6. Applications to Other Fields 112

- 6.1 Computational Time Complexity and Combinatorial Optimization 113

- 6.2 Neural Networks and Neural Computation 129

- 6.3 Protein Folding and Conformational Dynamics 144

- 6.4 Short Takes 168



7. Short-Range Spin Glasses: Some Basic Questions 175

- 7.1 Ground States 177

- 7.2 Pure States 188

- 7.3 Scenarios for the Spin Glass Phase of the EA Model 193

- 7.4 The Replica Symmetry Breaking and Droplet/Scaling Scenarios 194

- 7.5 The Parisi Overlap Distribution 197

- 7.6 Self-Averaging and Non-Self-Averaging 199

- 7.7 Ruling Out the Standard RSB Scenario 201

- 7.8 Chaotic Size Dependence and Metastates 203

- 7.9 A New RSB Scenario 206

- 7.10 Two More (Relatively) New Scenarios 211

- 7.11 Why Should the SK Model Behave Differently from the EA Model? 214

- 7.12 Summary: Where Do We Stand? 216



8. Are Spin Glasses Complex Systems? 218

- 8.1 Three Foundational Papers 219

- 8.2 Spin Glasses as a Bridge to Somewhere 227

- 8.3 Modern Viewpoints on Complexity 228

- 8.4 Spin Glasses: Old, New, and Quasi-Complexity 233

Notes 239

Glossary 265

Bibliography 285

Index 309


Daniel L. Stein is professor of physics and mathematics at New York University's Courant Institute of Mathematical Sciences. His books include Spin Glasses and Biology. Charles M. Newman is professor of mathematics at NYU's Courant Institute of Mathematical Sciences and at the University of California, Irvine. His books include Topics in Disordered Systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.