E-Book, Englisch, 240 Seiten, eBook
Stekolshchik Notes on Coxeter Transformations and the McKay Correspondence
1. Auflage 2008
ISBN: 978-3-540-77399-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 240 Seiten, eBook
Reihe: Springer Monographs in Mathematics
ISBN: 978-3-540-77399-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram.
The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers.
On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preliminaries.- The Jordan normal form of the Coxeter transformation.- Eigenvalues, splitting formulas and diagrams Tp,q,r.- R. Steinberg’s theorem, B. Kostant’s construction.- The affine Coxeter transformation.