Stout | Polynomial Convexity | E-Book | sack.de
E-Book

E-Book, Englisch, Band 261, 439 Seiten, eBook

Reihe: Progress in Mathematics

Stout Polynomial Convexity


1. Auflage 2007
ISBN: 978-0-8176-4538-0
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 261, 439 Seiten, eBook

Reihe: Progress in Mathematics

ISBN: 978-0-8176-4538-0
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book is devoted to an exposition of the theory of polynomially convex sets.Acompact N subset of C is polynomially convex if it is de?ned by a family, ?nite or in?nite, of polynomial inequalities. These sets play an important role in the theory of functions of several complex variables, especially in questions concerning approximation. On the one hand, the present volume is a study of polynomial convexity per se, on the other, it studies the application of polynomial convexity to other parts of complex analysis, especially to approximation theory and the theory of varieties. N Not every compact subset of C is polynomially convex, but associated with an arbitrary compact set, say X, is its polynomially convex hull, X, which is the intersection of all polynomially convex sets that contain X. Of paramount importance in the study of polynomial convexity is the study of the complementary set X \ X. The only obvious reason for this set to be nonempty is for it to have some kind of analytic structure, and initially one wonders whether this set always has complex structure in some sense. It is not long before one is disabused of this naive hope; a natural problem then is that of giving conditions under which the complementary set does have complex structure. In a natural class of one-dimensional examples, such analytic structure is found. The study of this class of examples is one of the major directions of the work at hand.

Stout Polynomial Convexity jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Some General Properties of Polynomially Convex Sets.- Sets of Finite Length.- Sets of Class A1.- Further Results.- Approximation.- Varieties in Strictly Pseudoconvex Domains.- Examples and Counterexamples.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.