Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
E-Book, Englisch, 802 Seiten, Web PDF
Stuart Progress in Refrigeration Science and Technology
1. Auflage 2014
ISBN: 978-1-4832-2360-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the XIth International Congress of Refrigeration, Munich, 1963
E-Book, Englisch, 802 Seiten, Web PDF
ISBN: 978-1-4832-2360-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Progress in Refrigeration Science and Technology, Volume I is a collection of papers from the Eleventh International Congress of Refrigeration held in Munich in August-September 1963. These papers deal with the various scientific and technical aspects, designs, and technology of refrigeration. One paper explains technological advances in the use of very low temperature fluids, namely liquid hydrogen and liquid helium as rocket fuels, as bubble chambers, in the study of mesons or hyperons, and in experiments involving the reaction of metals in a wide range of temperature. Another paper examines the requirements for improved food refrigeration and the limitations of certain methods when compared to other cold processing forms. Freeze-drying is also used in biology such as in freeze-drying of biological solutions, tissues, or living organisms. One paper explains the purification method for obtaining very pure hydrogen at high pressures to be used in comparative experiments on the thermodynamical properties of ortho- and para-hydrogen, and their mixtures. Another paper investigates the effect of heat exchange between capillary tube and suction line on the performance of small hermetic compressor systems. This collection is suitable for engineers or technologists in the area of refrigeration, as well as for scientists involved in the space industry and materials research.
Dr. Sam Stuart is a physiotherapist and a research Fellow within the Balance Disorders Laboratory, OHSU. His work focuses on vision, cognition and gait in neurological disorders, examining how technology-based interventions influence these factors. He has published extensively in world leading clinical and engineering journals focusing on a broad range of activities such as real-world data analytics, algorithm development for wearable technology and provided expert opinion on technology for concussion assessment for robust player management. He is currently a guest editor for special issues (sports medicine and transcranial direct current stimulation for motor rehabilitation) within Physiological Measurement and Journal of NeuroEngineering and Rehabilitation, respectively.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Progress in Refrigeration Science and Technology;4
3;Copyright Page;5
4;Table of Contents;10
5;Foreword;6
6;Preface;8
7;Volume I;9
8;Introduction;12
9;OPENING OF CONGRESS;12
10;OTHER ACTIVITIES OF THE CONGRESS;25
11;THE INTERNATIONAL INSTITUTE OF REFRIGERATION;25
12;CLOSING CEREMONY;26
13;Officers of the Xlth International Congress of Refrigeration Personnalités du XIe Congrès International du Froid;32
14;International Institute of Refrigeration — Officers Institut International du Froid Personnalités;33
15;Sponsor Organizations Organisations Donatrices;36
16;Organizations Providing Gifts Organisations ayant présenté des cadeaux;36
17;Part I: Plenary Meetings;38
17.1;Session
1: Technological Advances Using Very Low Temperatures;40
17.1.1;Chapter 1. Technological Applications of Very Low Temperatures;40
17.1.1.1;ROCKET FUELS;40
17.1.1.2;CRYOPUMPING: SPACE SIMULATION;41
17.1.1.3;CRYOGENIC PUMPING : WIND TUNNELS;41
17.1.1.4;BUBBLE CHAMBERS;41
17.1.1.5;HEAT AND VIBRATION;42
17.1.1.6;INFRA-RED DETECTORS;42
17.1.1.7;COMMUNICATIONS;43
17.1.1.8;STUDY OF METALS;43
17.1.1.9;QUANTUM EFFECTS;43
17.1.1.10;THE LOWEST TEMPERATURES;44
17.1.1.11;REFERENCES;44
17.1.2;Chapter 2. Applications of Superconductivity;46
17.1.2.1;ACKNOWLEDGMENT;49
17.1.2.2;REFERENCES;49
17.1.2.3;SUMMARY OF THE DISCUSSION (Papers P–3 + P–11);49
17.2;Session
2: Peltier Effect;52
17.2.1;Chapter 3. Concepts of Thermoelectric Refrigeration;52
17.2.1.1;PROGRESS IN REFRIGERATION;53
17.2.1.2;THE THERMOCOUPLE;53
17.2.1.3;THEORY OF A THERMOELECTRIC REFRIGERATOR;56
17.2.1.4;APPLICATION;58
17.2.2;Chapter 4. The Practical Use of Thermoelectric Refrigeration;60
17.2.2.1;EFFICIENCY CONSIDERATIONS;62
17.2.2.2;CHARACTERISTIC FEATURES;62
17.2.2.3;AIR COOLED THERMOELECTRIC DEVICES;63
17.2.2.4;CONTROLS;63
17.2.2.5;HEAT DISSIPATION;63
17.2.2.6;HEAT TRANSFER CHAIN, TEMPERATURE DROPS;63
17.2.2.7;CERAMIC PACKAGE UNITS;64
17.2.2.8;APPLICATIONS;64
17.2.2.9;ACKNOWLEDGMENT;71
17.2.2.10;SUMMARY OF THE DISCUSSION (Papers P–8 + P–7);71
17.3;Session 3: Energy for Refrigeration in Coming Years;76
17.3.1;Chapter 5.
Energy for Refrigeration, Present and Future;76
17.3.1.1;SOLID FUELS;76
17.3.1.2;LIQUID AND GASEOUS FUELS;77
17.3.1.3;SOLAR ENERGY;78
17.3.1.4;COMPRESSION REFRIGERATION;78
17.3.1.5;ABSORPTION REFRIGERATION;80
17.3.1.6;THERMOELECTRIC PROCESSES;81
17.3.1.7;FUEL CELLS;82
17.3.1.8;REFERENCES;84
17.3.1.9;DISCUSSION;84
17.4;Session 4:
Time-Temperature-Tolerance for Frozen Foods;86
17.4.1;Chapter 6.
Frozen Foods - Recent Advances in Science and Technology;86
17.4.1.1;INTRODUCTION;86
17.4.1.2;RAW MATERIAL CHARACTERISTICS;87
17.4.1.3;PROCESSING;87
17.4.1.4;PACKAGING;89
17.4.1.5;TIME AND TEMPERATURE;90
17.4.1.6;FUTURE TRENDS;92
17.4.2;Chapter 7. Factors Affecting the Keeping Quality of Frozen Foods;94
17.4.2.1;INTRODUCTION;94
17.4.2.2;THE TIME — TEMPERATURE RELATIONSHIP;94
17.4.2.3;METHODS OF DETERMINATION OF LOSS IN QUALITY;96
17.4.2.4;DETERMINATION OF "FIRST DETECTABLE DIFFERENCE";96
17.4.2.5;RELATING "FIRST DETECTABLE DIFFERENCE" TO CONSUMER ACCEPTANCE;97
17.4.2.6;DIFFERENCES IN STORAGE LIFE AS RELATED TO PRODUCTS, PROCESSING, AND PACKAGING;100
17.4.2.7;CONCLUSION;101
17.4.2.8;SUMMARY OF THE DISCUSSION (Papers P-2 + P-9);101
17.5;Session 5: Freeze-Drying;104
17.5.1;Chapter 8. Basic Principles of Lyophilization (Freeze-Drying);104
17.5.1.1;INTRODUCTION;104
17.5.1.2;I — THE RANGE OF THE MAIN APPLICATIONS OF FREEZE-DRYING;105
17.5.1.3;II — THE DIFFERENT STAGES OF THE FREEZE-DRYING PROCESS;106
17.5.1.4;REFERENCES;113
17.5.2;Chapter 9. Freeze-Drying in Biology;116
17.5.2.1;FREEZE-DRYING IN BIOLOGY;116
17.5.2.2;THE FREEZE-DRYING OF BIOLOGICAL SOLUTIONS;117
17.5.2.3;FREEZE-DRYING OF TISSUES;118
17.5.2.4;FREEZE-DRYING OF LIVING ORGANISMS;119
17.5.2.5;REFERENCES;120
17.5.3;Chapter 10.Freeze Drying of Foodstuffs;122
17.5.3.1;INTRODUCTION;122
17.5.3.2;RAW MATERIALS;122
17.5.3.3;PROCESSING PARAMETERS;123
17.5.3.4;FINISHED PRODUCT SPECIFICATIONS;125
17.5.3.5;PACKAGING AND STORAGE CONDITIONS;125
17.5.3.6;REHYDRATION;126
17.5.3.7;THE FUTURE;126
17.5.3.8;BIBLIOGRAPHY;126
17.5.4;Chapter 11. Engineering Problems and Economical Aspects of Freeze-Drying;128
17.5.4.1;SUMMARY OF THE DISCUSSION (Papers P-6, P-55 P-4, P-1);135
17.5.4.2;PACKAGING AND STORAGE OF THE FREEZE-DRIED MATERIAL;137
17.5.4.3;THERMODYNAMIC PROBLEMS CONCERNING THE FREEZE-DRYING PROCESS;138
18;Part II: Commission 1 Scientific problems of low temperature physics and thermodynamics. Cryogenic engineering;140
18.1;Session 6:
Liquefaction;142
18.1.1;Chapter 12.
Cryogenics and Space Technology;142
18.1.1.1;PROPERTIES OF PARAHYDROGEN;142
18.1.1.2;REFERENCES;146
18.1.2;Chapter 13. The NBS* Cryogenic Data Center**;147
18.1.2.1;DISCUSSION;150
18.1.3;Chapter 14. Liquefaction of Hydrogen and Helium for Nuclear Applications;152
18.1.3.1;(1) INTRODUCTION;152
18.1.3.2;(2) BUBBLE CHAMBER;152
18.1.3.3;(3) REFRIGERATION PLANT FOR COLD NEUTRON SOURCE;155
18.1.3.4;(4) FURTHER OUTLOOK;156
18.1.3.5;DISCUSSION;156
18.1.4;Chapter 15. A Simple Cooling System with a Cryogenic Pump;158
18.1.4.1;ACKNOWLEDGEMENT;159
18.1.5;Chapter 16. Helium Refrigerator for the Production of Cold at Temperatures down to 2.5° K;160
18.1.5.1;INTRODUCTION;160
18.1.5.2;FUNDAMENTALS OF THE PROCEDURE;161
18.1.5.3;A) REFRIGERATOR OPERATION;162
18.1.5.4;B) LIQUEFIER OPERATION;163
18.1.5.5;DESIGN PRINCIPLES;163
18.1.5.6;DISCUSSION;166
18.1.6;Chapter 17. A Miniature Helium Turbo-Expander for Cryogenic Refrigeration Systems;168
18.1.6.1;INDRODUCTION;168
18.1.6.2;DESIGN PHILOSOPHY;169
18.1.6.3;MECHANICAL DETAILS;169
18.1.6.4;TESTS;170
18.1.6.5;CONCLUDING REMARKS;171
18.1.6.6;REFERENCES;172
18.1.6.7;DISCUSSION;172
18.1.7;Chapter 18. Utilization of a Combined Expansion Cycle in Liquid Air Separating Installations;174
18.1.7.1;REFERENCES;177
18.1.8;Chapter 19. Purification Method for Obtaining Very Pure Hydrogen at High Pressure;178
18.1.8.1;INTRODUCTION;178
18.1.8.2;1. PURIFICATION OF NORMAL HYDROGEN;178
18.1.8.3;2. DETERMINATION OF THE DEGREE OF PURITY;180
18.1.8.4;3. SOME RESULTS OF PURIFICATION OBTAINED WITH THIS METHOD AND APPARATUS;181
18.1.8.5;REFERENCES;181
18.2;Session 7:
Applications to Nuclear Physics;182
18.2.1;Chapter 20.
Cryogenic Technology in the Nuclear Rocket Program;182
18.2.1.1;ACKNOWLEDGEMENT;187
18.2.1.2;REFERENCES;187
18.2.2;Chapter 21. Les problèmes techniques soulevés par les irradiations neutroniques au dessous de 30° K;188
18.2.2.1;1 - IRRADIATIONS A 28° K;188
18.2.2.2;2 - IRRADIATIONS A 5°K;191
18.2.2.3;REFERENCES;193
18.2.2.4;SUMMARY OF THE DISCUSSION (Papers I–18 and I–10);193
18.2.3;Chapter 22.
A Metallic Helium Cryostat for Double Resonance Experiments;196
18.2.3.1;1. THE DEWAR;196
18.2.3.2;2. THE LOW TEMPERATURE PART OF THE DOUBLE RESONANCE APPARATUS;197
18.2.3.3;ACKNOWLEDGMENTS;199
18.2.3.4;REFERENCES;199
18.2.4;Chapter 23.
Analyse thermique en dessous de 300° K de graphites irradiés aux neutrons à basse température;200
18.2.4.1;1 - EXECUTION DES MESURES D'ENERGIE EMMAGASINEE DEPUIS 80° K;201
18.2.4.2;2 - RESULTATS EXPERIMENTAUX;202
18.2.4.3;BIBLIOGRAPHIE;204
18.2.5;Chapter 24. Paramagnetic Resonance in y-Irradiated Donetz Coal;206
18.2.5.1;1. INTRODUCTION;206
18.2.5.2;2. DESIGN OF THE EXPERIMENTAL ARRANGEMENT;206
18.2.5.3;3. PRELIMINARY RESULTS;207
18.2.5.4;4. PROSPECTS;207
18.2.5.5;REFERENCES;208
18.2.6;Chapter 25. Lasting Changes in Properties of Metallic Materials Caused by Low Temperatures;210
18.2.6.1;SUMMARY;213
18.2.7;Chapter 26. Physical Aspects of Bubble Formation in Hydrogen and Thermodynamical Properties of Liquid n-Hydrogen;214
18.2.7.1;3. CONCLUSION;216
18.2.7.2;4. THERMODYNAMIC QUANTITIES OF LIQUID N HYDROGEN;216
18.2.7.3;REFERENCES;217
18.3;Session 8:
Thermodynamical Properties;218
18.3.1;Chapter 27.
The Logarithmic Temperature Scale;218
18.3.1.1;1. THE STRUCTURE OF THE LOGARITHMIC TEMPERATURE SCALE;218
18.3.1.2;2. LIMITATIONS IN THE USE OF THE LOGARITHMIC TEMPERATURE SCALE;220
18.3.1.3;REFERENCES;222
18.3.1.4;DISCUSSION;222
18.3.2;Chapter 28. The Correlation of Experimental Pressure-Density-Temperature and Specific Heat Data for Parahydrogen;224
18.3.2.1;INTRODUCTION;224
18.3.2.2;REPRESENTATION OF THE P-ñ-T DATA;224
18.3.2.3;CALCULATION OF THERMODYNAMIC FUNCTIONS;225
18.3.2.4;COMPARISON AND TESTS;226
18.3.2.5;REFERENCES;228
18.3.3;Chapter 29. The Velocity of Ultrasonic Pulses in Hydrogen Between 60 and 90°K as a Function of Pressure;230
18.3.3.1;SYNOPSIS;230
18.3.3.2;INTRODUCTION;230
18.3.3.3;RESULTS;230
18.3.3.4;REFERENCES;234
18.3.4;Chapter 30. Experimental Determination of HE for the System N2-H2 in the Gaseous State;236
18.3.4.1;REFERENCES;239
18.3.4.2;DISCUSSION;239
18.3.5;Chapter 31. Freezing Pressures of 8 He-4 He-Mixtures;240
18.3.5.1;THE RESULTS;240
18.3.5.2;PHASE-DIAGRAM;240
18.3.5.3;NEW DEVELOPMENTS;242
18.3.5.4;REFERENCES;242
18.3.5.5;DISCUSSION;243
18.3.6;Chapter 32. Flux Trapping and Flux Pumping with Solenoidal Superconductors;244
18.3.6.1;1. INTRODUCTION;244
18.3.6.2;2. APPARATUS AND TECHNIQUES;244
18.3.6.3;3. FLUX JUMPS AND FLUX CREEP;245
18.3.6.4;4. PROPERTIES OF SOME Nb-Sn PREPARATIONS;246
18.3.6.5;5. PERSISTENT MAGNETS;248
18.3.6.6;REFERENCES;249
18.3.6.7;DISCUSSION;249
18.3.7;Chapter 33. A Flux Pump for Generation of High Currents in a Superconducting Foil Magnet;252
18.3.7.1;REFERENCES;254
18.3.8;Chapter 34. Equipment for Producing Pulsed Magnetic Fields of High Intensity and Magneto-Resistance Measurements on Germanium;256
18.3.8.1;1. THE APPARATUS;256
18.3.8.2;2. THE COILS;256
18.3.8.3;3. MEASUREMENTS OF THE MAGNETORESISTANCE OF N-TYPE GERMANIUM;259
18.3.8.4;4. SECOND EQUIPMENT;260
18.3.8.5;CONCLUSION;262
18.3.9;Chapter 35.
The Kapitza Conductance of Lead;264
18.3.9.1;1. INTRODUCTION;264
18.3.9.2;2. SURFACE TREATMENTS AND RESULTS;264
18.3.9.3;3. DISCUSSION;267
18.3.9.4;REFERENCES;267
18.3.10;Chapter 36.
Basic Aspects for Superconducting Electric Machines;268
18.3.10.1;1. INTRODUCTION;268
18.3.10.2;2. THE INTERACTIONS BETWEEN SUPER-CURRENTS;268
18.3.10.3;REFERENCE;269
18.3.11;Chapter 37. Studies on Some Sulphide Phosphors in the Temperature Range from 4.2° to 77.4° K;270
18.3.11.1;1) THE APPARATUS AND THE MEASURING DEVICES;270
18.3.11.2;2) MEASUREMENTS AND RESULTS;271
18.3.11.3;3) DISCUSSION OF THE RESULTS;274
18.3.11.4;4. THE NATURE OF THE TRAPS;275
19;Part III: Commission 2 Transfer of heat. Thermal properties of materials. Instrumentation. Insulating materials;276
19.1;Session 9:
Problems of Insulation;278
19.1.1;Chapter 38. Heat Transfer by Natural Convection in Porous Insulants;278
19.1.1.1;INTRODUCTION;278
19.1.1.2;THE NATURE OF THE ENHANCED HEAT TRANSMISSION PROCESS;278
19.1.1.3;EXPERIMENTAL APPARATUS FOR CONVECTION STUDIES;278
19.1.1.4;THEORETICAL CALCULATION OF HEAT TRANSFER BY NATURAL CONVECTION;279
19.1.1.5;DISCUSSION OF RESULTS;281
19.1.1.6;REFERENCES;281
19.1.1.7;DISCUSSION;281
19.1.2;Chapter 39. Investigation of the Influence of Free Thermal Convection on Heat Transfer through Granular Material;284
19.1.2.1;INTRODUCTION;285
19.1.2.2;EXPERIMENTAL EQUIPMENT AND TEST PROGRAMME;285
19.1.2.3;TEST RESULTS;286
19.1.2.4;DETERMINATION OF PERMEABILITY;289
19.1.2.5;CONCLUSIONS;290
19.1.2.6;ACKNOWLEDGMENT;290
19.1.2.7;REFERENCES;290
19.1.2.8;DISCUSSION;290
19.1.3;Chapter 40. On the Thermal Conductivity of Powder Insulations;292
19.1.3.1;1. INTRODUCTION;292
19.1.3.2;2. THERMAL CONDUCTIVITY APPARATUS;292
19.1.3.3;3. SAMPLE PREPARATION;293
19.1.3.4;4. EXPERIMENTAL RESULTS;294
19.1.3.5;5. THEORETICAL AND EMPIRICAL CORRELATION OF DATA;296
19.1.3.6;6. CONCLUSIONS;298
19.1.3.7;5. ACKNOWLEDGMENTS;299
19.1.3.8;REFERENCES;299
19.1.3.9;DISCUSSION;299
19.1.4;Chapter 41.
The Influence of Gas-Filled Cells on Thermal Conductivity of Rigid Polyurethane Foam;302
19.1.4.1;REFERENCES;304
19.1.4.2;DISCUSSION;305
19.1.5;Chapter 42. Urethane Rigid Foams: Factors Affecting their Behaviour as Thermal Insulants;308
19.1.5.1;INTRODUCTION;308
19.1.5.2;MECHANISM OF HEAT TRANSFER;308
19.1.5.3;METHODS OF MEASUREMENT;309
19.1.5.4;THE INFLUENCE OF CELL SIZE ON K-VALUE;309
19.1.5.5;COMBINED EFFECT OF GAS CONTENT AND 7C-VALUE;311
19.1.5.6;AGEING;312
19.1.5.7;SOME PRACTICAL IMPLICATIONS;315
19.1.5.8;REFERENCES;316
19.1.5.9;DISCUSSION;316
19.1.6;Chapter 43.
Effectiveness of Evacuated Multiple-Layer Insulations;320
19.1.6.1;I. INTRODUCTION;320
19.1.6.2;II. MATERIAL SELECTION;320
19.1.6.3;III. TEST APPARATUS;321
19.1.6.4;IV. TEST PROCEDURE;323
19.1.6.5;V. DISCUSSION OF TEST RESULTS;323
19.1.6.6;REFERENCES;328
19.1.6.7;DISCUSSION;328
19.1.7;Chapter 44. Analysis of Economic Factors Affecting the Selection of Piping Insulation Thickness;330
19.1.7.1;APPENDIX;333
19.1.7.2;REFERENCES;335
19.2;Session 10:
Thermodynamics;338
19.2.1;Chapter 45.
A Non-Steady-State Method for the Measurement of the Thermal Conductivities of Liquid and Gases;338
19.2.1.1;REFERENCES;341
19.2.1.2;DISCUSSION;341
19.2.2;Chapter 46. Thermodynamic Properties of an Azeotropic Mixture of Freon-124 and Freon-C 318;344
19.2.3;Chapter 47.
Joule-Thomson Effect in Hydrogen-Methane Mixtures at Temperatures Between —35 and + 40°C;348
19.2.3.1;INTRODUCTION;348
19.2.3.2;APPARATUS;349
19.2.3.3;PRECISION OF MEASUREMENTS;350
19.2.3.4;PURITY OF GASES;351
19.2.3.5;RESULTS;352
19.2.3.6;REFERENCES;354
19.2.3.7;DISCUSSION;354
19.2.4;Chapter 48. On the Thermodynamics of the Cold-Air Cycle with Throttling;356
19.2.4.1;THE EXERGETIC EFFICIENCY;358
19.2.4.2;THE EXERGY LOSSES;360
19.2.4.3;THE EXERGY LOSS OF THE THROTTLING-PROCESS;360
19.2.4.4;THE EXERGY LOSS OF THE HEAT EXCHANGER;361
19.2.4.5;THE EXERGY LOSS OF THE COOLER;362
19.2.4.6;AN EXERGY FLOW DIAGRAM;363
19.2.4.7;REFERENCES;365
19.2.4.8;DISCUSSION;365
19.2.5;Chapter 49. Recovering of Cold by Evaporating Liquid Methane Employed in the Air Separation to Obtain Liquid Oxygen and Nitrogen;366
19.2.5.1;DISCUSSION;369
19.2.6;Chapter 50. Selection of Comparative Theoretical Cycle of Vapour Compression Refrigerating Plants;370
19.2.6.1;REFERENCES;373
19.2.6.2;DISCUSSION;373
19.3;Session 11: Heat Transfer;374
19.3.1;Chapter 51. Heat Transfer of Boiling Refrigerant 12 in Horizontal Tubes with Internal Flow Channel Guides;374
19.3.1.1;1. INTRODUCTION;374
19.3.1.2;2. EXPERIMENTAL PROCEDURE;375
19.3.1.3;3. RESULTS AND CONSIDERATIONS;376
19.3.1.4;CONCLUSIONS;381
19.3.1.5;NOMENCLATURE;381
19.3.1.6;REFERENCES;382
19.3.1.7;DISCUSSION;382
19.3.2;Chapter 52. Boiling Heat Transfer to a Cryogenic Fluid in Both Low and High Gravity Fields;384
19.3.2.1;INTRODUCTION;384
19.3.2.2;HEAT TRANSFER AT REDUCED AND NEAR ZERO GRAVITY;385
19.3.2.3;HEAT TRANSFER AT HIGH-GRAVITY;388
19.3.2.4;ACKNOWLEDGEMENTS;389
19.3.2.5;NOMENCLATURE;389
19.3.2.6;REFERENCES;390
19.3.2.7;DISCUSSION;391
19.3.3;Chapter 53.
Control and Economy of Air Cooled Refrigeration Condensers of Mean and High Outputs;394
19.3.4;Chapter 54. The Influence of Partial Pressure Difference and Supersaturation on the Frost Formation during the Cooling of Gas-Vapor-Mixtures in Counterflow Heat Exchangers;400
19.3.4.1;CONDENSATION IN THE CENTRE OF THE STREAM;401
19.3.4.2;FROST GROWTH ON THE WALLS;402
19.3.4.3;HEAT AND MASS TRANSFER;403
19.3.4.4;REFERENCES;404
19.3.4.5;DISCUSSION;405
19.3.5;Chapter 55. Influence of Oil on Heat Transfer of Boiling Freon 12 (Refrigerant 12) and Freon 22 (Refrigerant 22);406
19.3.5.1;APPARATUS;407
19.3.5.2;MEASUREMENTS;407
19.3.5.3;INFLUENCE OF FOAMING ON HEAT TRANSFER;412
19.3.5.4;EXPERIMENTS WITH ANOTHER OIL AND WITH FREON 22;415
19.3.5.5;ACKNOWLEDGMENT;415
19.3.5.6;REFERENCES;416
19.3.5.7;DISCUSSION;416
19.3.6;Chapter 56. Separation of Oil from Refrigerant Vapor;418
19.3.6.1;1. AIM OF THE EXPERIMENTAL WORK;418
19.3.6.2;2. RÉSUMÉ OF PREVIOUS WORK;418
19.3.6.3;3. DESCRIPTION OF THE TEST PLANT;418
19.3.6.4;4. DESCRIPTION OF THE TESTED OIL SEPARATORS;420
19.3.6.5;5. TEST PROCEDURE;420
19.3.6.6;6. RESULTS;421
19.3.6.7;7. CONCLUSIONS;422
19.3.6.8;ACKNOWLEDGEMENT;422
19.3.6.9;REFERENCES;422
19.3.6.10;DISCUSSION;422
19.3.7;Chapter 57. The Diffusional Penetration of Humidity in the Insulation of Pipes;426
19.3.7.1;REFERENCES;430
19.3.7.2;DISCUSSION;430
19.3.8;Chapter 58. On the Correlation of the Thermal Convection Coefficients;432
19.3.8.1;FREE CONVECTION;432
19.3.8.2;FORCED CONVECTION;435
19.3.8.3;BIBLIOGRAPHY;436
19.3.8.4;DISCUSSION;436
19.3.9;Chapter 59. Mesure en régime variable du coefficient d'échange thermique en surface;438
19.3.9.1;1 — SYMBOLES;438
19.3.9.2;2 — METHODE DIRECTE DE MESURE EN REGIME VARIABLE FONDEE SUR LA MESURE DU GRADIENT DE TEMPERATURE EN SURFACE;439
19.3.9.3;3 — METHODE INDIRECTE DE MESURE EN REGIME VARIABLE, FONDEE SUR LE REFROIDISSEMENT D'UN SOLIDE GEOMETRIQUE;440
19.3.9.4;4 — CONCLUSION;442
19.3.9.5;5 — BIBLIOGARPHIE;443
19.3.9.6;DISCUSSION;444
19.3.10;Chapter 60.
Sur la diffusivité thermique des matériaux non homogènes;446
19.3.10.1;METHODES D'ESSAI;446
19.3.10.2;RESULTATS;449
19.3.10.3;BIBLIOGRAPHIE;450
19.3.10.4;DISCUSSION;450
19.3.11;Chapter 61.
Determination of the Time Required for Contact Freezing of Whalemeat;452
19.3.11.1;INTRODUCTION;452
19.3.11.2;INDUCTION OF BASIC FORMULA;453
19.3.11.3;CONCLUSION;459
20;Part IV: Commission 3 Design, construction and operation of machinery for refrigerating and air conditioning plants;460
20.1;Session 12:
Piston and Turbo Compressors;462
20.1.1;Chapter 62. Direct Measuring of the Middle Indicated Pressure pmi of Compressors by Electronic Methods;462
20.1.1.1;REFERENCES;466
20.1.1.2;DISCUSSION;466
20.1.2;Chapter 63. Some Aspects of Pressure Pulse Attenuation for High Speed Reciprocating Compressors;468
20.1.2.1;REFERENCES;472
20.1.3;Chapter 64. Modern Measuring Technique for High-Speed Refrigerant Compressors;474
20.1.3.1;1. INTRODUCTION;474
20.1.3.2;2. MEASURING THE PRESSURE IN COMPRESSOR CYLINDERS;475
20.1.3.3;3. CALIBRATING THE PRESSURE PICKUPS DURING MEASUREMENT;475
20.1.3.4;4. MEASUREMENT OF VALVE PLATES LIFT;478
20.1.3.5;5. PRACTICAL APPLICATION OF THE MEASUREMENT TECHNIQUE;480
20.1.3.6;REFERENCES;481
20.1.4;Chapter 65. Study of Factors Influencing the Volumetric Efficiency of Reciprocating Compressors;482
20.1.4.1;1. INTRODUCTION;483
20.1.4.2;2. DESCRIPTION OF TESTED COMPRESSORS;484
20.1.4.3;3. VOLUMETRIC EFFICIENCY ë AND LOSS (1 — X);485
20.1.4.4;4. EFFICIENCY Av AND LOSS (1 — Av);486
20.1.4.5;5. EFFICIENCY At AND LOSS (1 — At);487
20.1.4.6;6. EFFICIENCY Au AND LOSS (1 — Au);489
20.1.4.7;7. CONCLUSION AND EVALUATION OF RESULTS;489
20.1.4.8;8. CONCLUSION;491
20.1.4.9;REFERENCES;491
20.1.4.10;LITERATURE;491
20.1.5;Chapter 66. Problèmes de construction posés par une machine à un seul arbrecomportant à un bout une turbine à vapeur et à l'autre bout un compresseur centrifuge frigorifique à deux étages;492
20.1.5.1;ARCHITECTURE GENERALE DE LA MACHINE;492
20.1.5.2;COMPRESSEUR;493
20.1.5.3;CARTER CENTRAL, REDUCTEUR DE VITESSE;493
20.1.5.4;SOCLE;494
20.1.5.5;REGULATION;495
20.1.5.6;SECURITE;496
20.1.5.7;DISCUSSION;496
20.1.6;Chapter 67.
Ammonia Centrifugal Refrigeration Plants in Operation;498
20.1.6.1;REFERENCES;502
20.1.6.2;DISCUSSION;502
20.1.7;Chapter 68.
Influence des propriétés physiques des frigorigènes sur les conditions de fonctionnement des turbomachines;504
20.1.7.1;1. BASES THERMODYNAMIQUES GÉNÉRALES;504
20.1.7.2;2. DONNÉES DE FONCTIONNEMENT D'UNE TURBOMACHINE;507
20.1.7.3;3. SIMILITUDE D'ÉCOULEMENT LORS DE L'UTILISATION DE GAZ DIFFÉRENTS;510
20.1.7.4;4. SIMILITUDE DE L'ÉCOULEMENT POUR DIFFÉRENTS FRIGORIGÈNES;511
20.1.7.5;5. RÉSULTATS MESURÉS SUR DES MACHINES GÉOMÉTRIQUEMENT SEMBLABLES;516
20.1.7.6;BIBLIOGRAPHIE;516
20.1.8;Chapter 69. Etude expérimentale sur les turbo-compresseurs frigorifiques monoroue;518
20.1.8.1;NOTATIONS UTILISEES;523
20.1.8.2;DISCUSSION;523
20.1.9;Chapter 70. Design of Mixed Flow Impellers Operating at High Mach Numbers for Industrial Centrifugal Refrigeration Equipment;524
20.1.10;Chapter 71. Operative Properties of Mixed Flow Impellers of High Mach Numbers Destined for Industrial Turbo-Compressor Refrigeration Equipment;532
20.2;Session 13:
Miscellaneous Questions;534
20.2.1;Chapter 72. Conditions of Cavitation in Liquid Pumps for Refrigerant Recirculation;534
20.2.1.1;INTRODUCTION;534
20.2.1.2;THEORY;535
20.2.1.3;EXPERIMENTAL PROCEDURE;540
20.2.1.4;RESULTS;542
20.2.1.5;CONSIDERATIONS IN SYSTEM DESIGN;545
20.2.1.6;ACKNOWLEDGMENTS;546
20.2.1.7;REFERENCES;546
20.2.1.8;DISCUSSION;546
20.2.2;Chapter 73. Liquid Content in Evaporator Pipes;550
20.2.2.1;DISCUSSION;553
20.2.3;Chapter 74. The Problem of Refrigerant Return Line Calculations in Pump Recirculation Systems;556
20.2.3.1;EXAMPLE OF COMPUTATION;560
20.2.3.2;REFERENCES;560
20.2.3.3;DISCUSSION;561
20.2.4;Chapter 75.
Conception des évaporateurs d'ammoniac des grands entrepôts frigorifiques polyvalents;562
20.2.4.1;11 RECHERCHE DU RENDEMENT MAXIMAL;562
20.2.4.2;12 — MODE D'ALIMENTATION;562
20.2.4.3;13 — STABILITÉ DE FONCTIONNEMENT ET PRÉCAUTIONS CONTRE LES TRANSFERTS DE CHARGE D'AMMONIAC;563
20.2.4.4;21 — SYSTÈME A REGORGEMENT NATUREL;563
20.2.4.5;22 - SYSTÈME A CIRCULATION PAR POMPE;564
20.2.4.6;23 — SYSTÈME MIXTE D'ALIMENTATION;566
20.2.4.7;III — CONCLUSION;567
20.2.4.8;REFERENCES;568
20.2.4.9;DISKUSSION;568
20.2.5;Chapter 76.
Utilization of Steel Stamp-Welded Panels for Heat Exchanging Apparatus in Refrigerating Plants;570
20.2.5.1;PACKAGED PANEL SUBCOOLERS;572
20.2.5.2;HOLD-OVER APPARATUS;573
20.2.5.3;CONCLUSION;574
20.2.6;Chapter 77.
Some Practical Tests on the Efficiency of Extended Surface Air Coolers;576
20.2.6.1;INTRODUCTION;576
20.2.6.2;AIR COOLERS TESTED;576
20.2.6.3;TEST APPARATUS;576
20.2.6.4;TEST RESULTS;578
20.2.6.5;OPTIMAL DESIGN OF REFRIGERANT DISTRIBUTION;580
20.2.6.6;CONCLUSION;581
20.2.6.7;ACKNOWLEDGEMENTS;581
20.2.6.8;DISCUSSION;584
20.2.7;Chapter 78. Determination of Cooling Air Optimum Velocity, Arrangement and Area of Air-Cooled Condenser Surface;586
20.2.8;Chapter 79. Construction des condenseurs évaporatifs et des condenseurs à l'air pour les installations frigorifiques lourdes;592
20.2.8.1;I. MESURE DU VOLUME RELATIF D'AIR;592
20.2.8.2;II. MESURE DU COEFFICIENT DE TRANSMISSION DE CHALEUR;593
20.2.8.3;III. CONSTRUCTION DES CONDENSEURS A L'EAU;595
20.2.8.4;IV. CONSTRUCTION DES CONDENSEURS A L'AIR;595
20.2.8.5;V. CONDENSEURS CKD CHOCEN;596
20.2.9;Chapter 80.
Etudes comparatives des circuits de condensation frigorifique refroidis par réfrigérants atmosphériques ou par condenseurs à evaporation;598
20.2.9.1;SUMMARY;598
20.2.9.2;1 : INTRODUCTION;598
20.2.9.3;2 : ETUDES DES SOLUTIONS CLASSIQUES AVEC REFRIGERANT ATMOSPHERIQUE ET CONDENSEURS MULTITUBULAIRES;599
20.2.9.4;3 : ETUDE DE LA SOLUTION AVEC CONDENSEUR A EVAPORATION;601
20.2.9.5;4 : DEVELOPPEMENT ET PROGRES RECENTS DES DEUX SYSTEM ESCOMPARES;603
20.2.9.6;CONCLUSION;604
20.2.10;Chapter 81. Reciprocating and Turbo-Expanders for Low Temperature Refrigeration;606
20.2.10.1;INTRODUCTION;606
20.2.10.2;RECIPROCATING EXPANDERS;608
20.2.10.3;TURBO EXPANDERS;612
20.2.10.4;CONCLUSION;615
20.2.11;Chapter 82. Production du froid artificiel par la détente du gaz naturel;618
20.2.11.1;INTRODUCTION;618
20.2.11.2;LE NOUVEAU PROCÉDÉ;619
20.2.11.3;APPLICATION PRATIQUE;621
20.2.11.4;PROBLÈMES CONSTRUCTIFS;623
20.2.11.5;OBTENTION DE BASSES TEMPÉRATURES;624
20.2.12;Chapter 83. Design Problems of Supersonic Ejectors Operating as Booster Compressors in Refrigerating Systems;626
20.2.12.1;NOMENCLATURE;626
20.2.12.2;1. INTRODUCTION;627
20.2.12.3;2. THERMODYNAMIC AND GASDYNAMIC PROCESSES;627
20.2.12.4;3. EJECTION COEFFICIENT;629
20.2.12.5;4. ACCELERATION OF DRIVEN JET;630
20.2.12.6;5. DELIVERY CAPACITY;631
20.2.12.7;6. GEOMETRICAL SIZES;632
20.2.12.8;7. PRACTICAL HINTS;632
20.2.12.9;REFERENCES;634
20.2.12.10;DISCUSSION;635
20.2.13;Chapter 84. New Definitions Needed in Refrigeration;636
20.2.13.1;REFERENCES;637
20.3;Session 14:
Thermoelectric Refrigeration, Absorption;638
20.3.1;Chapter 85.
Performance of a Thermoelectric Refrigerator as a Function of Characteristic Parameters;638
20.3.1.1;EFFECT OF VARIATION OF PARAMETERS ON PERFORMANCE;643
20.3.1.2;REFERENCES;645
20.3.2;Chapter 86. Thermoelectric Refrigeration - Possibilities and Problems;646
20.3.2.1;DESIGN AND OPERATION REQUIREMENT FOR MAXIMUM EFFICIENCY;646
20.3.2.2;CHARACTERISTIC FEATURES;647
20.3.2.3;DESIGN PROBLEMS OF MODULES AND PACKAGE UNITS;648
20.3.2.4;APPLICATION PROBLEMS;650
20.3.2.5;COST OF SEMICONDUCTING MATERIAL;650
20.3.2.6;REFERENCES;651
20.3.3;Chapter 87. Thermoelectric Refrigeration and Prospects for its Wide Scale Technical Application;652
20.3.3.1;SUMMARY OF THE DISCUSSION (Papers 111-17, 111-22, 111-28);658
20.3.4;Chapter 88. Diagrams of Dimensionless Equations Determining Two Basic Working Regimes of Peltier Heat Pump;660
20.3.4.1;1. INTRODUCTION;660
20.3.4.2;2. ELEMENTARY DEFINITIONS;661
20.3.4.3;3. CALCULATION OF PARAMETERS OF COOLING ELEMENT;661
20.3.4.4;4. CONCLUSION;665
20.3.4.5;APPENDIX;665
20.3.5;Chapter 89. Transient Temperatures in a Thermoelectric Refrigerator Following a Step Change in Current;668
20.3.5.1;PART I. ANALYTICAL SOLUTION;668
20.3.5.2;PART II. EXPERIMENTAL INVESTIGATION;671
20.3.5.3;REFERENCES;678
20.3.6;Chapter 90. Come-Back of the Absorption Refrigerator?;680
20.3.6.1;COMPARISON OF THE COP OF THE CARNOT-CYCLES FOR COMPRESSORS AND ABSORBERS;681
20.3.6.2;COMPARISON OF THE EFFECTIVE COP FOR COMPRESSORS AND ABSORBERS;683
20.3.6.3;COMPARISON OF THE PERFORMANCES OF THE COMPRESSORS AND ABSORBERS;685
20.3.6.4;FURTHER CORRECTION FACTORS IN FAVOUR OF THE ABSORBER;686
20.3.6.5;THE FINAL COMPARISON OF THE TWO UNITS;687
20.3.6.6;THE COMPARISON OF TWO REFRIGERATORS;688
20.3.6.7;COMPARISON OF THE PRODUCTION-COSTS OF SUCH REFRIGERATORS;688
20.3.6.8;CONCLUSIONS;689
20.3.7;Chapter 91.
Analysis of Actual Processes in a Lithium Bromide Absorption Machine;690
20.3.7.1;REFERENCES;694
20.3.8;Chapter 92. L'emploi de la machine frigorifique à absorption comme « pompe à chaleur;696
20.3.8.1;BIBLIOGRAPHIE;702
20.3.8.2;SUMMARY OF THE DISCUSSION (Papers III-6 + III-41);702
20.3.8.3;The Feeding of an Ammonia Absorption Refrigeration System Rectifier with Liquid from the Evaporator;704
20.3.9;Chapter 93. A Method for Determining Performance Characteristics of Absorption Refrigeration Systems;710
20.3.9.1;THERMAL COMPRESSOR AND EVAPORATOR;711
20.3.9.2;CONDENSER;714
20.3.9.3;SYSTEM PERFORMANCE;715
20.3.10;Chapter 94. New Pumping Method in Absorption Refrigeration;718
20.4;Session 15: Refrigerants, Automation;722
20.4.1;Chapter 95.
Material Stabilities in Vapor Compression Refrigeration Systems;722
20.4.1.1;INTRODUCTION;722
20.4.1.2;EXAMPLES OF TYPICAL DEGRADATION REACTIONS;723
20.4.1.3;CONCLUSIONS;727
20.4.1.4;REFERENCES;728
20.4.2;Chapter 96. Utilization of Refrigerant Mixtures in Refrigerating Compression Machines;730
20.4.3;Chapter 97. The Lubrication of Refrigerant 22 Machines;734
20.4.3.1;INTRODUCTION;734
20.4.3.2;MISCIBILITY OF MINERAL OILS WITH R 22;734
20.4.3.3;MISCIBILITY OF AROMATIC OILS WITH R 22;736
20.4.3.4;PERFORMANCE OF AROMATIC OILS IN REFRIGERATOR COMPRESSORS;736
20.4.3.5;SERVICE EXPERIENCE WITH OIL I;738
20.4.3.6;REFERENCES;738
20.4.3.7;DISCUSSION;738
20.4.4;Chapter 98. Examinations on the Behaviour of Plastics in Hermetic Units;740
20.4.4.1;INTRODUCTION;740
20.4.4.2;MATERIALS TESTED AND PROCESSING;740
20.4.4.3;WATER CONTENT AND DRYING;742
20.4.4.4;TEMPERATURE LIMIT;742
20.4.4.5;SOLVENT RESISTANCE;742
20.4.4.6;LIFE-TEST RESULTS;743
20.4.4.7;REFERENCES;745
20.4.5;Chapter 99. Effect of Heat Exchange between Capillary Tube and Suction Line on the Performance of Small Hermetic Compressor Systems;748
20.4.5.1;BACKGROUND FOR THE INVESTIGATION;748
20.4.5.2;DESCRIPTION OF THE TESTING ARRANGEMENT;748
20.4.5.3;THE INFLUENCE OF THE HEAT EXCHANGE ON THE REFRIGERATING CAPACITY;749
20.4.5.4;THE INFLUENCE OF THE HEAT EXCHANGE ON THE MOTOR TEMPERATURE;751
20.4.5.5;CONCLUSION;751
20.4.5.6;DISCUSSION;752
20.4.6;Chapter 100.
A Special Method for the Measurement of Capacities and Characteristics of Thermostatic Expansion Valves;754
20.4.7;Chapter 101. Some Experiments on the Discharge Coefficients and Characteristics of Ammonia Thermostatic Expansion Valves;760
20.4.8;Chapter 102.
Liquid Control for High Evaporator Efficiency;764
20.4.8.1;INTRODUCTION;764
20.4.8.2;COOLERS WITH THERMOSTATIC EXPANSION VALVES;766
20.4.8.3;FLOODED EVAPORATORS WITH SELF CIRCULATION OF THE LIQUID;766
20.4.8.4;EVAPORATORS WITH FORCED CIRCULATION OF LIQUID REFRIGERANT;768
20.4.8.5;CONCLUSION;769
20.4.8.6;REFERENCES;770
20.4.9;Chapter 103.
Report on Liquid Level Control of Flooded Evaporator of Refrigerating System by Automatic Level Controller;772
20.4.9.1;1. INTRODUCTION;772
20.4.9.2;2. THERMO-ELECTRICAL CONTROLLING;772
20.4.9.3;3. BRIEF EXPLANATION OF OUR EXPERIMENTAL PLANT;773
20.4.9.4;4. RECORDS OF TEMPERATURE MEASURED AT THE EXPERIMENTS;774
20.4.9.5;5. CONCLUSION;777
20.4.9.6;SUMMARY OF THE DISCUSSION (PAPERS 111-39 + III-21);777
20.4.10;Chapter 104. Introduction commune pour les deux rapports suivantes (III-36 et -37);780
20.4.11;Chapter 105. Régulation de la production du froid dans les installations frigorifiques;782
20.4.11.1;I - PRINCIPE DE LA REGULATION DE PRODUCTION DU FROID D'UNE INSTALLATION FRIGORIFIQUE (entrepôt);782
20.4.11.2;II - SCHEMA FONCTIONNEL DE LA BOUCLE DE REGULATION;783
20.4.11.3;III - ETUDE DE LA STABILITE ET DE LA PRECISION DE LA REGULATION;787
20.4.11.4;IV - CONCLUSION;790
20.4.12;Chapter 106. Les automatismes a séquences dans la production et l'utilisation du froid;792
20.4.12.1;TOUS CES CONTACTS SONT INDEPENDANTS LES UNS DES AUTRES;797