E-Book, Englisch, 336 Seiten
Styring / Quadrelli / Armstrong Carbon Dioxide Utilisation
1. Auflage 2014
ISBN: 978-0-444-62748-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Closing the Carbon Cycle
E-Book, Englisch, 336 Seiten
ISBN: 978-0-444-62748-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Carbon Dioxide Utilisation: Closing the Carbon Cycle explores areas of application such as conversion to fuels, mineralization, conversion to polymers, and artificial photosynthesis as well as assesses the potential industrial suitability of the various processes. After an introduction to the thermodynamics, basic reactions, and physical chemistry of carbon dioxide, the book proceeds to examine current commercial and industrial processes, and the potential for carbon dioxide as a green and sustainable resource. While carbon dioxide is generally portrayed as a 'bad' gas, a waste product, and a major contributor to global warming, a new branch of science is developing to convert this 'bad' gas into useful products. This book explores the science behind converting CO2 into fuels for our cars and planes, and for use in plastics and foams for our homes and cars, pharmaceuticals, building materials, and many more useful products. Carbon dioxide utilization is a rapidly expanding area of research that holds a potential key to sustainable, petrochemical-free chemical production and energy integration. - Accessible and balanced between chemistry, engineering, and industrial applications - Informed by blue-sky thinking and realistic possibilities for future technology and applications - Encompasses supply chain sustainability and economics, processes, and energy integration
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Carbon Dioxide Utilisation
Closing the Carbon Cycle;4
3;Copyright;5
4;Contents;6
5;List of Contributors;12
6;Preface;16
6.1;P.1 Utilisation;17
6.2;P.2 Closing the Carbon Cycle;19
6.3;P.3 The Multiple Roles of CDU;22
6.4;Acknowledgements;24
6.5;References;25
7;PART 1 - Introductory Concepts;26
7.1;Chapter 1 - What is CO2? Thermodynamics, Basic Reactions and Physical Chemistry;28
7.1.1;1.1 Introduction;28
7.1.2;1.2 Spectroscopy and its role in climate change;30
7.1.3;1.3 Phase behaviour and solvent properties;31
7.1.4;1.4 Kinetics and thermodynamics;33
7.1.5;1.5 Commercially important reactions of carbon dioxide;37
7.1.6;References;40
7.2;Chapter 2 - Carbon Dioxide Capture Agents and Processes;44
7.2.1;2.1 Carbon dioxide sources;44
7.2.2;2.2 Capture processes;45
7.2.3;2.3 Carbon dioxide capture agents;47
7.2.4;2.4 Future perspectives;53
7.2.5;2.5 Concluding remarks;56
7.2.6;References;56
7.3;Chapter 3 - CO2-Derived Fuels for Energy Storage;58
7.3.1;3.1 Introduction;58
7.3.2;3.2 The decarbonisation of electrical generation;60
7.3.3;3.3 The decarbonisation of transport;65
7.3.4;3.4 The decarbonisation of heat;67
7.3.5;3.5 Conclusion;68
7.3.6;References;69
7.3.7;Further Reading;69
7.4;Chapter 4 - Environmental Assessment of CO2 Capture and Utilisation;70
7.4.1;4.1 Introduction: Why do we need a reliable environmental assessment of CO2 utilisation?;70
7.4.2;4.2 Green chemistry and environmental assessment tools;71
7.4.3;4.3 Life cycle assessment;72
7.4.4;4.4 ISO standardisation of LCA;73
7.4.5;4.5 How to conduct an LCA for CO2 capture and utilisation?;74
7.4.6;4.6 Conclusions for LCA of CCU;80
7.4.7;Acknowledgement;80
7.4.8;References;80
8;PART 2 -
Contribution to Materials;82
8.1;Chapter 5 - Polymers from CO2—An Industrial Perspective;84
8.1.1;5.1 Introduction;84
8.1.2;5.2 Challenges in CO2 utilisation;84
8.1.3;5.3 Polymers based on CO2;85
8.1.4;5.4 Polymers based on CO2—direct approach;86
8.1.5;5.5 Polymers based on CO2—indirect approach;92
8.1.6;5.6 Industrial example: direct epoxide/CO2 copolymerization;92
8.1.7;5.7 Summary and outlook;94
8.1.8;References;94
8.2;Chapter 6 - CO2-based Solvents;98
8.2.1;6.1 Introduction;98
8.2.2;6.2 CO2 as a solvent;99
8.2.3;6.3 CO2-expanded liquids;107
8.2.4;6.4 CO2-responsive switchable solvents;112
8.2.5;6.5 Conclusions;117
8.2.6;References;118
8.3;Chapter 7 - Organic Carbonates;122
8.3.1;7.1 Introduction;122
8.3.2;7.2 Carbonates from cyclic ethers;123
8.3.3;7.3 Linear carbonates from alcohols;125
8.3.4;7.4 Cyclic carbonate from diols;130
8.3.5;7.5 Effect of drying agents;132
8.3.6;7.6 Oxidative carboxylation of alkenes;135
8.3.7;7.7 Industrial potential;136
8.3.8;References;138
8.4;Chapter 8 - Accelerated Carbonation of Ca- and Mg-Bearing Minerals and Industrial Wastes Using CO2;140
8.4.1;8.1 Introduction;140
8.4.2;8.2 Engineered weathering of silicate minerals;144
8.4.3;8.3 Carbonation of alkaline industrial wastes;152
8.4.4;References;160
9;PART 3 -
Energy and Fuels;164
9.1;Chapter 9 - Conversion of Carbon Dioxide to Oxygenated Organics;166
9.1.1;9.1 Introduction;166
9.1.2;9.2 Methanol production;168
9.1.3;9.3 Dimethyl ether;179
9.1.4;9.4 Other oxygenates;181
9.1.5;9.5 Concluding remarks;181
9.1.6;References;181
9.2;Chapter 10 - The Indirect and Direct Conversion of CO2 into Higher Carbon Fuels;186
9.2.1;10.1 The (inevitable) coupled nature of our energy and CO2 emission challenges;186
9.2.2;10.2 The concept of carbon-neutral liquid hydrocarbon fuels;188
9.2.3;10.3 The conversion or utilisation of CO2;189
9.2.4;Acknowledgement;205
9.2.5;References;205
9.3;Chapter 11 - High Temperature Electrolysis;208
9.3.1;11.1 Introduction;209
9.3.2;11.2 High temperature operation;210
9.3.3;11.3 Cell and stack configurations and balance of plant;212
9.3.4;11.4 Cell materials;213
9.3.5;11.5 Electrochemistry;219
9.3.6;11.6 SOC diagnostics;221
9.3.7;11.7 Electrolysis of carbon dioxide and co-electrolysis of carbon dioxide and steam;224
9.3.8;11.8 Conclusions;230
9.3.9;References;230
9.4;Chapter 12 - Photoelectrocatalytic Reduction of Carbon Dioxide;236
9.4.1;12.1 Introduction;236
9.4.2;12.2 Organizing principles of photoelectrochemical CO2 reduction;239
9.4.3;12.3 Photovoltaic/electrolyser duel module systems: Metal electrodes for CO2 conversion;243
9.4.4;12.4 Group III–V: GaP, InP, GaAs as photocathode for CO2 reduction;247
9.4.5;12.5 Group II–VI: CdTe, and Group IV: Si, SiC photoelectrodes;248
9.4.6;12.6 Titanium oxide photoelectrodes;249
9.4.7;12.7 Other oxides photoelectrode: Cu2O, CuFeO2, etc;250
9.4.8;12.8 Semiconductor with a molecular co-catalyst;251
9.4.9;12.9 Semiconductors decorated with metal electrocatalysts for CO2 reduction;252
9.4.10;12.10 Summary, conclusion and prospect;254
9.4.11;Acknowledgements;255
9.4.12;References;255
10;PART 4 -
Perspectives and Conclusions;260
10.1;Chapter 13 - Emerging Industrial Applications;262
10.1.1;13.1 Introduction;262
10.1.2;13.2 Scaleup;262
10.1.3;13.3 Technology readiness;264
10.1.4;13.4 Methanol pilot plants;266
10.1.5;13.5 CO2 reduction on a pilot scale;267
10.1.6;13.6 Reforming reactions on a pilot scale;267
10.1.7;13.7 Polymer pilot plants;268
10.1.8;13.8 Mineralization pilot plants;272
10.1.9;13.9 Summary;274
10.1.10;References;275
10.2;Chapter 14 - Integrated Capture and Conversion;278
10.2.1;14.1 Introduction;278
10.2.2;14.2 Routes to CDU;279
10.2.3;14.3 Integrated CO2 utilisation processes;280
10.2.4;References;293
10.3;Chapter 15 - Understanding and Assessing Public Perceptions of Carbon Dioxide Utilisation (CDU) Technologies;298
10.3.1;15.1 Introduction;298
10.3.2;15.2 What will the public think of CDU?;299
10.3.3;15.3 Assessing public opinions of CDU;303
10.3.4;15.4 Conclusion;306
10.3.5;References;307
10.4;Chapter 16 - Potential CO2 Utilisation Contributions to a More Carbon-Sober Future: A 2050 Vision;310
10.4.1;16.1 Context elements;310
10.4.2;16.2 Efficiency and new materials to complement CCS efforts;312
10.4.3;16.3 The massive attention on renewable energy injection;315
10.4.4;16.4 Bridges among CO2-to-fuel and specialty chemicals productions;322
10.4.5;16.5 When CO2 supply becomes the issue;323
10.4.6;16.6 Local solutions to global issues;323
10.4.7;16.7 Timescales to deployment;325
10.4.8;References;325
11;Index;328
What is CO2? Thermodynamics, Basic Reactions and Physical Chemistry
Abstract
This introductory chapter introduces the structural, physical and spectroscopic properties of carbon dioxide and shows how these are linked to its role in global warming. The phase behaviour of carbon dioxide is introduced including the accessibility of a supercritical phase. The kinetics and thermodynamics of reactions involving carbon dioxide are introduced to provide a theoretical basis for understanding the reactions of carbon dioxide and the limitations as to what catalysis can achieve. Finally, the commercially important chemical reactions of carbon dioxide are surveyed within this kinetic and thermodynamic framework.
Keywords
kinetics; thermodynamics; reactivity; phase-behaviour; structure
Chapter Outline
1.2 Spectroscopy and its role in climate change?5
1.3 Phase behaviour and solvent properties?6
1.4 Kinetics and thermodynamics?8