Sun / Zhang / Gao | Finite Difference Methods for Nonlinear Evolution Equations | E-Book | sack.de
E-Book

E-Book, Englisch, Band 8, 432 Seiten

Reihe: De Gruyter Series in Applied and Numerical Mathematics

Sun / Zhang / Gao Finite Difference Methods for Nonlinear Evolution Equations


1. Auflage 2023
ISBN: 978-3-11-079611-7
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band 8, 432 Seiten

Reihe: De Gruyter Series in Applied and Numerical Mathematics

ISBN: 978-3-11-079611-7
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines.

Sun / Zhang / Gao Finite Difference Methods for Nonlinear Evolution Equations jetzt bestellen!

Zielgruppe


Libraries,graduate students and researchers studying computationa

Weitere Infos & Material


1 Difference methods for the Fisher equation


1.1 Introduction


The Fisher equation belongs to the class of reaction-diffusion equations. In fact, it is one of the simplest semilinear reaction-diffusion equations, the one which has the inhomogeneous term f(u)=?u(1-u), which can exhibit traveling wave solutions that switch between equilibrium states given by f(u)=0. Such an equation occurs, e.?g., in ecology, physiology, combustion, crystallization, plasma physics and in general, phase transition problems. Fisher proposed this equation in 1937 to describe the spatial spread of an advantageous allele and explored its traveling wave solutions [12]. In the same year (1937) as Fisher, Kolmogorov, Petrovskii and Piskunov introduced a more general reaction-diffusion equation [18]. In this chapter, we consider the following initial and boundary value problem of a one-dimensional Fisher equation:

where ? is a positive constant, functions f(x), a(t), ß(t) are all given and f(0)=a(0), f(L)=ß(0). Suppose that the problem (1.1)–(1.3) has a smooth solution.

Before introducing the difference scheme, a priori estimate on the solution of the problem (1.1)–(1.3) is given.

Theorem 1.1. Let u(x,t) be the solution of the problem (1.1)–(1.3) with a(t)=0, ß(t)=0. Denote
E(t)=?0Lu2(x,t)dx+2?0t[?0Lux2(x,s)dx+??0L(u3(x,s)-u2(x,s))dx]ds,F(t)=?0Lux2(x,t)dx+??0L[23u3(x,t)-u2(x,t)]dx+2?0t[?0Lus2(x,s)dx]ds.
Then
E(t)=E(0),F(t)=F(0),0

Proof.


(I) Multiplying both the right- and left-hand sides of (1.1) by u(x,t) gives

u(x,t)ut(x,t)-u(x,t)uxx(x,t)+?[u3(x,t)-u2(x,t)]=0,

i.?e.,

12ddt[u2(x,t)]-(u(x,t)ux(x,t))x+ux2(x,t)+?[u3(x,t)-u2(x,t)]=0.

Integrating both the right- and left-hand sides with respect to x on the interval [0,L] and noticing (1.3) with a(t)=ß(t)=0, we have

12ddt?0Lu2(x,t)dx+?0Lux2(x,t)dx+??0L[u3(x,t)-u2(x,t)]dx=0,

which can be rewritten as

ddt{?0Lu2(x,t)dx+2?0t[?0Lux2(x,s)dx+??0L(u3(x,s)-u2(x,s))dx]ds}=0.

Then E(t)=E(0) is obtained.

(II) Multiplying both the right- and left-hand sides of (1.1) by ut(x,t) yields

ut2(x,t)-ut(x,t)uxx(x,t)-?[u(x,t)-u2(x,t)]ut(x,t)=0,

i.?e.,

ut2(x,t)-(ut(x,t)ux(x,t))x+(12ux2(x,t))t+?[13u3(x,t)-12u2(x,t)]t=0.

Integrating both the right- and left-hand sides with respect to x on the interval [0,L] and noticing (1.3) with a(t)=ß(t)=0, we have

12ddt?0Lux2(x,t)dx+?ddt?0L[13u3(x,t)-12u2(x,t)]dx+?0Lut2(x,t)dx=0,

which can be rewritten as

ddt[?0Lux2(x,t)dx+??0L(23u3(x,t)-u2(x,t))dx+2?0t(?0Lus2(x,s)dx)ds]=0,

i.?e.,

dF(t)dt=0,0

Thus, F(t)=F(0) is followed. ?

1.2 Notation and lemmas


In order to derive the difference scheme, we first divide the domain [0,L]×[0,T]. Take two positive integers m, n. Divide [0,L] into m equal subintervals, and [0,T] into n subintervals. Denote h=L/m, t=T/n; xi=ih, 0?i?m; tk=kt, 0?k?n; Oh={xi|0?i?m}, Ot={tk|0?k?n};Oht=Oh×Ot. We call all of the nodes {(xi,tk)|0?i?m} on the line t=tk the k-th time-level nodes. In addition, denote xi+12=12(xi+xi+1), tk+12=12(tk+tk+1), r=th2.

Denote

Uh={u|u=(u0,u1,…,um)is the grid function defined onOh},U°h={u|u?Uh,u0=um=0}.

For any grid function u?Uh, introduce the following notation:

dxui+12=1h(ui+1-ui),dx2ui=1h2(ui-1-2ui+ui+1),?xui=12h(ui+1-ui-1).

It follows easily that

dx2ui=1h(dxui+12-dxui-12),?xui=12(dxui-12+dxui+12).

Suppose u,v?Uh. Introduce the inner products, norms and seminorms as

(u,v)=h(12u0v0+?i=1m-1uivi+12umvm),?dxu,dxv?=h?i=1m(dxui-12)(dxvi-12),?u?8=max0?i?m|ui|,?u?=(u,u),?dxu?8=max1?i?m|dxui-12|,|u|1=?dxu,dxu?,?u?1=?u?2+|u|12,|u|2=h?i=1m-1(dx2ui)2,?u?2=?u?2+|u|12+|u|22.

If Uh is a complex space, then the corresponding inner product is defined by

(u,v)=h(12u0v¯0+?i=1m-1uiv¯i+12umv¯m),

with v¯i the conjugate of vi.

Denote

St={w|w=(w0,w1,…,wn)is the grid function defined onOt}.

For any w?St, introduce the following notation:

wk+12=12(wk+wk+1),wk¯=12(wk+1+wk-1),Dtwk=1t(wk+1-wk),Dt?wk=1t(wk-wk-1),dtwk+12=1t(wk+1-wk),?twk=12t(wk+1-wk-1).

It is easy to know that

?twk=12(dtwk-12+dtwk+12).

Suppose u={uik|0?i?m,0?k?n} is a grid function defined on Oht, then v={uik|0?i?m} is a grid function defined on Oh, w={uik|0?k?n} is a grid function defined on Ot.

Lemma 1.1 ([25], [35]).


(a) Suppose u,v?Uh, then

-h?i=1m-1(dx2ui)vi=h?i=1m(dxui-12)(dxvi-12)+(dxu12)v0-(dxum-12)vm.

(b) Suppose u?U°h, then

-h?i=1m-1(dx2ui)ui=|u|12,|u|12??u?·|u|2,?u?8?L2|u|1,?u??L6|u|1.

(c) Suppose u?U°h, then

?u?82??u?·|u|1,

and for arbitrary e>0, it holds that

?u?8?e|u|1+14e?u?,?u?82?e|u|12+14e?u?2.

(d) Suppose u?Uh, then

|u|12?4h2?u?2.

(e) Suppose u?Uh, then

?u?82?2?u?·|u|1+1L?u?2,

and for arbitrary e>0, it holds that

?u?82?e|u|12+(1e+1L)?u?2.

(f) Suppose u?Uh, then for arbitrary e>0, it holds that

?dxu?82?e|u|22+(1e+1L)|u|12.

Proof.


We only prove (c) and (e).

(c) Noticing that...


Zhi-Zhong Sun, Southeast University; Qifeng Zhang, Zhejiang Sci-Tech University; Guang-hua Gao, Nanjing University, China.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.