Takagi / Simon | Advances in Endogenous and Exogenous Opioids | E-Book | www.sack.de
E-Book

E-Book, Englisch, 520 Seiten, Web PDF

Takagi / Simon Advances in Endogenous and Exogenous Opioids

Proceedings of the International Narcotic Research Conference (Satellite Symposium of the 8th International Congress of Pharmacology) Held in Kyoto, Japan on July 26-30, 1981
1. Auflage 2013
ISBN: 978-1-4831-6159-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the International Narcotic Research Conference (Satellite Symposium of the 8th International Congress of Pharmacology) Held in Kyoto, Japan on July 26-30, 1981

E-Book, Englisch, 520 Seiten, Web PDF

ISBN: 978-1-4831-6159-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Advances in Endogenous and Exogenous Opioids contains the proceedings of the International Narcotic Research Conference (Satellite Symposium of the 8th International Congress of Pharmacology) held in Kyoto, Japan on July 26-30, 1981. The conference provided a forum for discussing advances that have been made in the understanding of endogenous and exogenous opioids and tackled a wide array of topics ranging from novel opiate binding sites selective for benzomorphan drugs to the purification of opioid receptors and sequellae of receptor binding. Comprised of 156 chapters, this book begins with an analysis of the interaction of opioid peptides and alkaloid opiates with mu-, delta-, and kappa-binding sites. The reader is then systematically introduced to biochemical evidence for kappa and sigma opiate receptors; the action of morphine and oxymorphone as partial agonists on the field-stimulated rat vas deferens; mechanisms of supersensitivity in the enkephalinergic system; and properties of the solubilized opiate receptor from human placenta. Subsequent chapters explore the biosynthesis of opioid peptides as well as their localization, release, and degradation; physiological and pharmacological actions of opioids; and the use of analgesia in acupuncture. Results of behavioral and clinical studies of endogenous and exogenous opioids are also presented, and the structure-activity relationships of opioids are examined. This monograph will be of interest to students, practitioners, and researchers in the fields of psychiatry and pharmacology.

Takagi / Simon Advances in Endogenous and Exogenous Opioids jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Advances in Endogenous and Exogenous Opioids;4
3;Copyright Page;5
4;Preface;8
5;Acknowledgements;10
6;List of Participants;12
7;Table of Contents;16
8;Part I: MULTIPLE OPIOID RECEPTORS;28
8.1;Chapter 1. THE INTERACTION OF OPIOID PEPTIDES AND ALKALOID OPIATES WITH µ-, d- AND .- BINDING SITES;29
8.1.1;INTRODUCTION;29
8.1.2;METHODS;29
8.1.3;RESULTS;30
8.1.4;ACKNOWLEDGEMENTS;31
8.1.5;REFERENCES;31
8.2;Chapter 2. CHARACTERIZATION OF NOVEL OPIATE BINDING SITES SELECTIVE FOR BENZOMORPHAN DRUGS;32
8.2.1;SUMMARY;32
8.2.2;INTRODUCTION;32
8.2.3;METHODS;33
8.2.4;RESULTS AND DISCUSSION;33
8.2.5;REFERENCES;35
8.3;Chapter 3. BIOCHEMICAL EVIDENCE FOR KAPPA AND SIGMA OPIATE RECEPTORS;36
8.3.1;BIOCHEMICAL EVIDENCE FOR KAPPA AND SIGMA OPIATE RECEPTORS;36
8.3.2;SUMMARY;36
8.3.3;INTRODUCTION;36
8.3.4;METHODS;36
8.3.5;RESULTS;37
8.3.6;DISCUSSION;38
8.3.7;REFERENCES;38
8.4;Chapter 4. CHARACTERIZATION OF DYNORPHIN RECEPTOR SPECIFICITY IN THE GUINEA PIG ILEUM;39
8.4.1;SUMMARY;39
8.4.2;REFERENCES;41
8.5;Chapter 5. OPIATE RECEPTORS IN THE GUINEA-PIG ILEAL MUCOSA;42
8.5.1;SUMMARY;42
8.5.2;INTRODUCTION;42
8.5.3;METHODS;42
8.5.4;REFERENCES;44
8.6;Chapter 6. OPIATE BINDING SITES IN THE LUMBO-SACRAL SPINAL CORD FROM VARIOUS SPECIES;45
8.6.1;SUMMARY;45
8.6.2;INTRODUCTION;45
8.6.3;METHODS;45
8.6.4;RESULTS;46
8.6.5;DISCUSSION;47
8.6.6;REFERENCES;47
8.7;Chapter 7. EFFECTS OF OPIOID PEPTIDES AND KAPPA-RECEPTOR AGONISTS ON IN VITRO ISOLATEDPREPARATIONS;48
8.7.1;SUMMARY;48
8.7.2;INTRODUCTION;48
8.7.3;METHODS;48
8.7.4;RESULTS;49
8.7.5;DISCUSSION;49
8.7.6;REFERENCES;50
8.8;Chapter 8. MULTIPLE BENZOMORPHAN BINDING SITES IN A CLONAL CELL LINE;51
8.8.1;SUMMARY;51
8.8.2;METHODS;51
8.8.3;DISCUSSION;53
8.8.4;REFERENCES;53
8.9;Chapter 9. MORPHINE AND OXYMORPHONE ACT AS PARTIAL AGONISTS ON THE FIELD STIMULATED RAT VAS DEFERENS;54
8.9.1;SUMMARY;54
8.9.2;INTRODUCTION;54
8.9.3;METHODS;55
8.9.4;RESULTS;55
8.9.5;DISCUSSION;55
8.9.6;REFERENCES;56
8.10;Chapter 10. SPECIFIC OPIATE BINDING SITES IN HUMAN PLACENTA;57
8.10.1;SUMMARY;57
8.10.2;INTRODUCTION;57
8.10.3;METHODS;57
8.10.4;RESULTS;57
8.10.5;DISCUSSION;59
8.10.6;REFERENCES;59
8.11;Chapter 11. MULTIPLE BINDING SITES FOR 3H-ETHYLKETOCYCLAZOCINE ON THE LUMBO-SACRAL PORTIONOF THE GUINEA-PIG SPINAL CORD;60
8.11.1;SUMMARY;60
8.11.2;INTRODUCTION;60
8.11.3;METHODS;60
8.11.4;RESULTS;61
8.11.5;DISCUSSION;62
8.11.6;REFERENCES;62
8.12;Chapter 12. DIFFERENTIAL INTERACTIONS OF DYNORPHIN(1-13), ß-ENDORPHIN, AND ENKEPHALIN-RELATED PEPTIDES AT µ AND d SITES IN DIFFERENT BRAIN REGIONS;63
8.12.1;SUMMARY;63
8.12.2;INTRODUCTION;63
8.12.3;METHODS;63
8.12.4;RESULTS;63
8.12.5;DISCUSSION;65
8.12.6;REFERENCES;65
8.13;Chapter 13. DIFFERENTIAL EFFECTS OF ISOMERS OF OPIOID ANTAGONISTS UPON µ-, K- and d AGONIST ANALGESIA: COMPARISON WITH OXOTREMORINE.;66
8.13.1;SUMMARY;66
8.13.2;INTRODUCTION;66
8.13.3;METHODS;66
8.13.4;RESULTS;66
8.13.5;DISCUSSION;68
8.13.6;REFERENCES;68
8.14;Chapter 14. POTENCIES OF "MU" AND "KAPPA" AGONISTS ON SMOOTH MUSCLE PREPARATIONS RELATIVE TO DISPLACEMENT OF 3H-ETORPHINE IN ISOLATED RAT BRAIN NEURAL MEMBRANES;69
8.14.1;SUMMARY;69
8.14.2;INTRODUCTION;69
8.14.3;METHODS;69
8.14.4;RESULTS AND DISCUSSION;70
8.14.5;ACKNOWLEDGEMENT;71
8.14.6;REFERENCES;71
8.15;Chapter 15. COMPARISON OF 3H-ETORPHINE AND 3H-DIPRENORPHINE RECEPTOR BINDING IN VIVO AND IN VITRO;72
8.15.1;SUMMARY;72
8.15.2;INTRODUCTION;72
8.15.3;METHODS;72
8.15.4;RESULTS;73
8.15.5;DISCUSSION;74
8.15.6;REFERENCES;74
8.16;Chapter 16. TENTATIVE IDENTIFICATION OF HIGH AFFINITY OPIOID BINDING SITES IN THE PEDAL GANGLIA OF THE MARINE MUSSEL Mytilus edulis;75
8.16.1;SUMMARY;75
8.16.2;INTRODUCTION;75
8.16.3;METHODS;75
8.16.4;RESULTS;75
8.16.5;DISCUSSION;77
8.16.6;REFERENCES;77
8.17;Chapter 17. OPIOID RECEPTORS ON RAT MAST CELLS;78
8.17.1;SUMMARY;78
8.17.2;INTRODUCTION;78
8.17.3;METHODS;78
8.17.4;RESULTS AND DISCUSSION;79
8.17.5;REFERENCES;80
8.18;Chapter 18. MECHANISMS OF SUPERSENSITIVITY IN THE ENKEPHALINERGIC SYSTEM;81
8.18.1;SUMMARY;81
8.18.2;INTRODUCTION;81
8.18.3;METHODS;81
8.18.4;RESULTS;82
8.18.5;DISCUSSION;83
8.18.6;REFERENCES;83
8.19;Chapter 19. POSTNATAL DEVELOPMENT OF OPIOID MECHANISMS IN RAT VAS DEFERENS;84
8.19.1;SUMMARY;84
8.19.2;INTRODUCTION;84
8.19.3;METHODS;84
8.19.4;RESULTS;85
8.19.5;DISCUSSION;86
8.19.6;REFERENCES;86
8.20;Chapter 20. DEVELOPMENTAL DIFFERENCES OF METHIONINE ENKEPHALIN AND NALOXONE BINDING SITES INREGIONS OF RAT BRAIN;87
8.20.1;SUMMARY;87
8.20.2;INTRODUCTION;87
8.20.3;METHODS;87
8.20.4;RESULTS;87
8.20.5;DISCUSSION;88
8.20.6;REFERENCES;89
8.21;Chapter 21. µ, d AND OPIATE RECEPTORS: INTERCONVERTIBLE FORMS OF THE SAME RECEPTOR;90
8.21.1;SUMMARY;90
8.21.2;INTRODUCTION;90
8.21.3;METHODS;90
8.21.4;RESULTS AND DISCUSSION;91
8.21.5;REFERENCES;92
9;PART II: PURIFICATION AND NATURE OF OPIOID RECEPTORS AND SEQUELLAE OF RECEPTOR BINDING;94
9.1;Chapter 22. CHARACTERIZATION OF SOLUBILIZED ACTIVE OPIATE RECEPTORS FROM TOAD BRAIN;95
9.1.1;SUMMARY;95
9.1.2;INTRODUCTION;95
9.1.3;METHODS;95
9.1.4;RESULTS;96
9.1.5;DISCUSSION;97
9.1.6;REFERENCES;97
9.2;Chapter 23. MULTIPLE ETORPHINE BINDING PROTEINS FROM BRAIN;98
9.2.1;SUMMARY;98
9.2.2;INTRODUCTION;98
9.2.3;METHODS;98
9.2.4;RESULTS;99
9.2.5;DISCUSSION;100
9.2.6;REFERENCES;100
9.3;Chapter 24. DIFFERENCES BETWEEN THE OPATE RECEPTOR AND THE ENKEPHALIN RECEPTOR IN RAT BRAIN;101
9.3.1;SUMMARY;101
9.3.2;INTRODUCTION;101
9.3.3;MATERIALS AND METHODS;101
9.3.4;RESULTS AND DISCUSSION;102
9.3.5;REFERENCES;103
9.4;Chapter 25. PROPERTIES OF THE SOLUBILIZED OPIATE RECEPTOR FROM HUMAN PLACENTA;104
9.4.1;SUMMARY;104
9.4.2;INTRODUCTION;104
9.4.3;EXPERIMENTAL PROCEDURES;104
9.4.4;METHODS;105
9.4.5;RESULTS AND DISCUSSION;105
9.4.6;REFERENCES;106
9.5;Chapter 26. ISOLATION OF AN OPIATE RECEPTOR AND THE EFFECT OF MEMBRANE LIPIDS ON ISOLATEDRECEPTOR BINDING;107
9.5.1;SUMMARY;107
9.5.2;INTRODUCTION;107
9.5.3;METHODS;107
9.5.4;RESULTS;107
9.5.5;DISCUSSION;108
9.5.6;ACKNOWLEDGEMENTS;109
9.5.7;REFERENCES;109
9.6;Chapter 27. PHOSPHATIDYL INOSITOL AS A BINDING COMPONENT OF OPIOID RECEPTOR;110
9.6.1;SUMMARY;110
9.6.2;INTRODUCTION;110
9.6.3;MATERIALS AND METHOD;110
9.6.4;RESULTS AND DISCUSSION;111
9.6.5;REFERENCES;112
9.7;Chapter 28. SELECTIVITY OF OPIATE AMD OPIOID PEPTIDE INTERACTION WITH CEREBROSIDE SULFATE;113
9.7.1;SUMMARY;113
9.7.2;INTRODUCTION;113
9.7.3;METHODS;113
9.7.4;RESULTS;113
9.7.5;DISCUSSION;115
9.7.6;REFERENCES;115
9.8;Chapter 29. IRREVERSIBLE PHOTOACTIVATION OF THE OPIATE RECEPTORS IN THE GUINEA-PIG ILEUM BY SOME ENKEPHAL IN DERIVATIVES;116
9.8.1;SUMMARY;116
9.8.2;INTRODUCTION;116
9.8.3;MATERIALS and METHODS;116
9.8.4;RESULTS;117
9.8.5;DISCUSSION;118
9.8.6;REFERENCES;118
9.9;Chapter 30. EFFECTS OF SULFHYDRYL-PROTECTING REAGENTS ON OPIOID RECEPTOR BINDING SITE(S);119
9.9.1;SUMMARY;119
9.9.2;INTRODUCTION;119
9.9.3;MATERIALS AND METHOD;119
9.9.4;RESULTS AND DISCUSSION;120
9.9.5;REFERENCES;121
9.10;Chapter 31. STIMULATION AND DESENSITIZATION OF cGMP FORMATION BY OPIOID AGONISTS IN CLONEDNEUROBLASTOMA CELLS;122
9.10.1;SUMMARY;122
9.10.2;INTRODUCTION;122
9.10.3;METHODS;123
9.10.4;RESULTS AND DISCUSSION;123
9.10.5;REFERENCES;124
9.11;Chapter 32. ASCORBATE SUPPRESSES OPIATE INDUCED COMPENSATORY INCREASE IN CYCLIC AMP LEVELS IN NEUROBLASTOMA X GLIOMA HYBRID CELLS;125
9.11.1;SUMMARY;125
9.11.2;INTRODUCTION;125
9.11.3;METHODS;125
9.11.4;RESULTS;126
9.11.5;DISCUSSION;127
9.11.6;ACKNOWLEDGEMENT;127
9.11.7;REFERENCES;128
9.12;Chapter 33. A CASE AGAINST RECEPTOR OCCUPANCY AS THE SOLE DETERMINANT IN THE OPIATE REGULATION OF ADENYLATE CYCLASE ACTIVITY IN NEUROBLASTOMA CELLS;129
9.12.1;SUMMARY;129
9.12.2;INTRODUCTION;129
9.12.3;METHODS;130
9.12.4;RESULTS;130
9.12.5;DISCUSSION;131
9.12.6;REFERENCES;132
9.13;Chapter 34. INCREASE IN PLASMA CYCLIC NUCLEOTIDE LEVELS INDUCED BY MORPHINE IN MALE MICE;133
9.13.1;SUMMARY;133
9.13.2;INTRODUCTION;133
9.13.3;METHODS;134
9.13.4;RESULTS;134
9.13.5;DISCUSSION;135
9.13.6;REFERENCES;135
10;PART III: BIOSYNTHESIS OF OPIOID PEPTIDES;136
10.1;Chapter 35. STRUCTURAL ORGANIZATION OF THE C0RTICOTROPIN-ß-LIPOTROPIN PRECURSOR GENE;137
10.1.1;SUMMARY;137
10.1.2;INTRODUCTION;137
10.1.3;METHODS;137
10.1.4;RESULTS;138
10.1.5;DISCUSSION;139
10.1.6;REFERENCES;139
10.2;Chapter 36. BIOSYNTHESIS AND MATURATION OF PRO-OPIOMEL ANOCORTIN;140
10.2.1;SUMMARY;140
10.2.2;INTRODUCTION;140
10.2.3;RESULTS;140
10.2.4;REFERENCES;142
10.3;Chapter 37. MULTIPLE FORMS OF BETA-ENDORPHIN (ßE) IN PITUITARY AND BRAIN: EFFECT OF STRESS;143
10.3.1;INTRODUCTION;143
10.3.2;METHODS;143
10.3.3;CONCLUSION AND DISCUSSION;145
10.3.4;REFERENCES;145
10.4;Chapter 38. CALCITONIN-LIKE PEPTIDE IN PRO-OPIOCORTIN: FUNCTIONAL ASPECTS;146
10.4.1;SUMMARY;146
10.4.2;THE LIGAND;146
10.4.3;EXCESS IN OBESE RATS;146
10.4.4;THE RECEPTOR;147
10.4.5;THE PHYSIOLOGY;147
10.4.6;REFERENCES;147
10.5;Chapter 39.EFFECT OF MORPHINE OR ALCOHOL TREATMENT ON THE BIOSYNTHESIS OF ß-END0RPHIN BY THE NEUROINTERMEDIATE LOBE;149
10.5.1;SUMMARY;149
10.5.2;INTRODUCTION;149
10.5.3;METHODS;149
10.5.4;RESULTS;150
10.5.5;DISCUSSION;150
10.5.6;REFERENCES;151
10.6;Chapter 40. MEMBRANES OF BOVINE CHROMAFFIN GRANULES CONTAIN ENKEPHALIN PRECURSORS LARGER THAN 100,000 DALTONS.;152
10.6.1;DISTRIBUTION OF ENKEPHALIN PRECURSORS IN THE BOVINE ADRENAL MEDULLA;152
10.6.2;CHARACTERIZATION OF THE OVER 100,000 DALTON MATERIAL;154
10.6.3;ACKNOWLEDGEMENTS;154
10.6.4;REFERENCES;154
10.7;Chapter 41. PROENKEPHALIN AND INTERMEDIATES IN THE BIOSYNTHESIS OF ENKEPHALINS: Sadao;155
10.7.1;REFERENCES;157
10.8;Chapter 42. "BIG" ENKEPHALINS FROM BOVINE ADRENOMEDULLARY GLAND;158
10.8.1;SUMMARY;158
10.8.2;INTRODUCTION;158
10.8.3;METHODS;158
10.8.4;RESULTS AND DISCUSSION;159
10.8.5;REFERENCES;160
10.9;Chapter 43. CONVERSION OF MET-ENKEPHALIN-Arg6-Phe7 TO MET-ENKEPHALIN BY DIPEPTIDYL CARBOXYPEPTIDASE;161
10.9.1;SUMMARY;161
10.9.2;INTRODUCTION;161
10.9.3;METHODS;161
10.9.4;RESULTS;162
10.9.5;DISCUSSION;163
10.9.6;REFERENCES;163
11;PART IV: ENDOGENOUS NOVEL OPIOID PEPTIDES;164
11.1;Chapter 44. SEARCH FOR MORPHINE-ANTAGONISTIC AGENTS IN HUMAN CSF AND BRAIN;165
11.1.1;SUMMARY;165
11.1.2;INTRODUCTION;165
11.1.3;METHODS;165
11.1.4;RESULT AND DISCUSSION;166
11.1.5;ACKNOWLEDGEMENTS;167
11.1.6;REFERENCES;167
11.2;Chapter 45. H-ENDORPHIN, A NOVEL ENDOGENOUS OPIOID WITH UNCONVENTIONAL NALOXONE INTERACTIONS.;169
11.2.1;INTRODUCTION;169
11.2.2;RESULTS;169
11.2.3;CONCLUSIONS;171
11.2.4;REFERENCES;171
11.3;Chapter 46. ISOLATION AND IDENTIFICATION OF TWO NEW PEPTIDES RELATED TO ß-ENDORPHIN;172
11.3.1;SUMMARY;172
11.3.2;INTRODUCTION;172
11.3.3;METHODS;172
11.3.4;RESULTS AND DISCUSSION;173
11.3.5;REFERENCES;175
11.4;Chapter 47. ISOLATION OF DYNORPHIN-LIKE PEPTIDE FROM GUT EXTRACT;176
11.4.1;SUMMARY;176
11.4.2;INTRODUCTION;176
11.4.3;MATERIALS AND METHODS;176
11.4.4;RESULTS AND DISCUSSION;177
11.4.5;REFERENCES;178
11.5;Chapter 48. SUBSTANTIAL AMOUNTS OF IMMUNOREACTIVE BAM-12P AND BAM-22P ARE PRESENT IN BOVINE ADRENAL MEDULLA BUT NOT IN THE BRAIN;179
11.5.1;SUMMARY;179
11.5.2;INTRODUCTION;179
11.5.3;METHOD;179
11.5.4;RESULTS;180
11.5.5;REFERENCES;181
11.6;Chapter 49. DETECTION OF a-N-ACETYL ß-ENDORPHINS IN PITUITARY BY SPECIFIC ANTIBODIES;182
11.6.1;SUMMARY;182
11.6.2;INTRODUCTION;182
11.6.3;METHODS;182
11.6.4;RESULTS AND DISCUSSION;183
11.6.5;REFERENCES;184
12;PART V: LOCALIZATION RELEASE AND DEGRADATION OF OPIOID PEPTIDES;186
12.1;Chapter 50. REGIONAL DISTRIBUTION OF IMMUNOREACTIVE "BIG" LEU-ENKEPHALINS INBRAIN AND PITUITARY;187
12.1.1;SUMMARY;187
12.1.2;INTRODUCTION;187
12.1.3;METHODS;187
12.1.4;RESULTS AND DISCUSSION;188
12.1.5;REFERENCES;189
12.2;Chapter 51. ANATOMICAL AND BIOCHEMICAL STUDIES OF DYNORPHIN;190
12.2.1;SUMMARY;190
12.2.2;INTRODUCTION;190
12.2.3;METHODS AND RESULTS;190
12.2.4;REFERENCES;192
12.2.5;ACKNOWLEDGEMENT;192
12.3;Chapter 52. ß-ENDORPHIN IN THE BRAIN AND PITUITARY; EVIDENCE FOR TWO SPECIFIC PROCESSING PATTERNS;193
12.3.1;SUMMARY;193
12.3.2;INTRODUCTION;193
12.3.3;METHODS;194
12.3.4;RESULTS AND DISCUSSION;194
12.3.5;REFERENCES;196
12.4;Chapter 53. MEASUREMENT OF MET-ENKEPHALIN(ARG6 ,PHE7 ) IN RAT BRAIN BY SPECIFIC RADIOIMMUNOASSAY DIRECTED AT METHIONINE SULPHOXIDE ENKEPHALIN(ARG6 , PHE7 );197
12.4.1;SUMMARY;197
12.4.2;INTRODUCTION;197
12.4.3;METHODS;197
12.4.4;RESULTS;198
12.4.5;DISCUSSION;199
12.4.6;REFERENCES:;199
12.5;Chapter 54. OPIOID PEPTIDE IN THE DOG CANINE PULP?;200
12.5.1;SUMMARY;200
12.5.2;INTRODUCTION;200
12.5.3;METHOD;200
12.5.4;RESULTS;201
12.5.5;DISCUSSION;202
12.5.6;ACKNOWLEDGEMENTS;202
12.5.7;REFERENCES;202
12.6;Chapter 55. SUBCELLULAR LOCALIZATION OF ANALGESIC DIPEPTIDE, KYOTORPHIN (TYR-ARG) IN THERAT BRAIN;203
12.6.1;SUMMARY;203
12.6.2;INTRODUCTION;203
12.6.3;METHODS;203
12.6.4;RESULTS;204
12.6.5;DISCUSSION;204
12.6.6;REFERENCES;205
12.7;Chapter 56. RELEASE OF ENDOGENOUS OPIOIDS FROM SPINAL CORD IN VIVO FOLLOWING SCIATIC NERVE STIMULATION.;206
12.7.1;SUMMARY;206
12.7.2;INTRODUCTION;206
12.7.3;METHODS;206
12.7.4;RESULTS;207
12.7.5;DISCUSSION;208
12.7.6;ACKNOWLEDGEMENTS;208
12.7.7;REFERENCES;208
12.8;Chapter 57. NOXIOUS STIMULUS-INDUCED RELEASE OF MET-ENKEPHALIN FROM THE NUCLEUS RETICULARIS GIGANTOCELLULARIS OF THE RAT;209
12.8.1;SUMMARY;209
12.8.2;INTRODUCTION;209
12.8.3;METHODS;209
12.8.4;RESULTS;210
12.8.5;DISCUSSION;211
12.8.6;REFERENCES;211
12.9;Chapter 58. INTESTINAL OPIOIDS MAY MODULATE THE ACTION OF ACETYLCHOLINE ON PERISTALSIS IN VITRO. RELEASE STUDIES POINT TO A POSSIBLE ROLE FOR DYNORPHIN IN THE CONTROLOF PERISTALSIS.;212
12.9.1;SUMMARY;212
12.9.2;INTRODUCTION;212
12.9.3;METHODS;212
12.9.4;RESULTS;213
12.9.5;DISCUSSION;214
12.9.6;REFERENCES;214
12.10;Chapter 59. INHIBITION OF THEIR BREAKDOWN AND RELEASE OF ENDOGENOUS OPIOID PEPTIDES FROM THE MYENTERIC PLEXUS-LONGITUDINAL MUSCLE OF THE GUINEA-PIG ILEUM;215
12.10.1;SUMMARY;215
12.10.2;INTRODUCTION;215
12.10.3;METHODS;215
12.10.4;RESULTS;216
12.10.5;DISCUSSION;217
12.10.6;ACKNOWLEDGEMENTS;217
12.10.7;REFERENCES;217
12.11;Chapter 60. PROPERTIES OF ENKEPHALINASE FROM MOUSE AND HUMAN BRAIN;218
12.11.1;INTRODUCTION;218
12.11.2;DISCUSSION;220
12.11.3;REFERENCES;221
12.12;Chapter 61. DISCRETE REGIONAL DISTRIBUTION FOR ENKEPHALINASE AND AMINOPEPTIDASE IN MICRODISSECTED RAT BRAIN;222
12.12.1;SUMMARY;222
12.12.2;INTRODUCTION;222
12.12.3;METHODS;222
12.12.4;RESULTS;222
12.12.5;DISCUSSION;224
12.12.6;REFERENCES;224
13;PART VI: PHYSIOLOGICAL AND PHARMACOLOGICAL ACTIONS OF OPIOIDS;226
13.1;Chapter 62. OPIATES CAUSE ACTIVATION OF A CALCIUM-DEPENDENT POTASSIUM CONDUCTANCE;227
13.1.1;REFERENCES;228
13.2;Chapter 63. ENKEPHALINERGIC PRESYNAPTIC INHIBITION IN MAMMALIAN SYMPATHETIC GANGLIA;229
13.2.1;SUMMARY;229
13.2.2;INTRODUCTION;229
13.2.3;NALOXONE-REVERSIBLE PRESYNAPTIC INHIBITION OF CHOLINERGIC TRANSMISSION FOLLOWING PREGANGLIONIC NERVE STIMULATION;229
13.2.4;INHIBITORY EFFECT OF ENK ON SP-CONTAINING AFFERENT NERVE TERMINALS IN THE GANGLIA;231
13.2.5;CONCLUSION;231
13.2.6;REFERENCES;231
13.3;Chapter 64. ACTIONS OF ENKEPHALIN ON SINGLE NEURONS IN CILIARY GANGLIA;232
13.3.1;SUMMARY;232
13.3.2;INTRODUCTION;232
13.3.3;METHODS;232
13.3.4;RESULTS;233
13.3.5;DISCUSSION;234
13.3.6;REFERENCES;234
13.4;Chapter 65. THE DISTRIBUTION OF RECEPTORS FOR ENKEPHALIN AND MORPHINE IN THE DORSAL HORN OF THE CAT;235
13.4.1;SUMMARY;235
13.4.2;INTRODUCTION;235
13.4.3;METHODS;235
13.4.4;RESULTS;236
13.4.5;DISCUSSION;236
13.4.6;REFERENCES;237
13.5;Chapter 66. MUTUAL INHIBITION OF SPINAL NOCICEPTIVE PATHWAYS;238
13.5.1;SUMMARY;238
13.5.2;INTRODUCTION;238
13.5.3;METHODS;239
13.5.4;RESULTS AND DISCUSSION;239
13.5.5;ACKNOWLEDGEMENTS;240
13.5.6;REFERENCES;240
13.6;Chapter 67. DIFFERENTIAL EFFECTS OF OPIOIDS ON SINGLE NEURONES IN RAT BRAIN;241
13.6.1;METHODS;241
13.6.2;RESULTS;242
13.6.3;DISCUSSION;242
13.6.4;REFERENCES;243
13.7;Chapter 68. POSSIBLE EXISTENCE OF ENKEPHALINERGIC NEURONS IN THE STRIATO-PALLIDAL PATHWAY INTHE RAT BRAIN;244
13.7.1;SUMMARY;244
13.7.2;INTRODUCTION;244
13.7.3;METHODS;244
13.7.4;RESULTS AND DISCUSSION;245
13.7.5;REFERENCES;246
13.8;Chapter 69. EXCITATORY ACTION OF MICROELECTROPHORETICALLY APPLIED KYOTORPHIN (TYR-ARG) ONUNITARY ACTIVITY IN THE RAT CEREBRAL CORTEX;247
13.8.1;SUMMARY;247
13.8.2;INTRODUCTION;247
13.8.3;METHODS;248
13.8.4;RESULTS;248
13.8.5;DISCUSSION;249
13.8.6;REFERENCES;249
13.9;Chapter 70. ENDORPHINS AS MEDIATORS OF ETHANOL ACTIONS: MULTIDISCIPLINARY TESTS;250
13.9.1;SUMMARY;250
13.9.2;INTRODUCTION;250
13.9.3;METHODS;251
13.9.4;RESULTS;251
13.9.5;DISCUSSION;252
13.9.6;REFERENCES;252
13.10;Chapter 71. THE MDDULATORY EFFECT OF MORPHINE AND MONOAMINE OXIDASE B (MAO-B) SYSTEM ON ENKEPHALIN-INDUCED SEIZURES;253
13.10.1;SUMMARY;253
13.10.2;INTRODUCTION;253
13.10.3;METHODS;253
13.10.4;RESULTS;254
13.10.5;DISCUSSION;255
13.10.6;REFERENCES;255
13.11;Chapter 72. USE OF THE NOVEL OPIATE, ß-FUNALTREXAMINE (ß-FNA) IN THE ELUCIDATION OF RECEPTOR TYPES INVOLVED IN OPIATE-MEDIATED RESPIRATORY DEPRESSION;256
13.11.1;SUMMARY;256
13.11.2;INTRODUCTION;256
13.11.3;METHODS;256
13.11.4;RESULTS;257
13.11.5;DISCUSSION;258
13.11.6;REFERENCES;258
13.12;Chapter 73. DIURNAL RHYTHM IN RESPONSE TO NOXIOUS STIMULI - INCREASE OF MET-ENKEPHALIN INGLOBUS PALLIDUS;259
13.12.1;SUMMARY;259
13.12.2;INTRODUCTION;259
13.12.3;METHODS;259
13.12.4;RESULTS;260
13.12.5;DISCUSSION;260
13.12.6;REFERENCES;261
13.13;Chapter 74. EFFECTS OF PSYCHOTROPIC DRUGS ON THE LEVELS OF ENKEPHALINS, THEIR RECEPTORS AND ENKEPHALINASE IN RAT BRAIN;262
13.13.1;SUMMARY;262
13.13.2;INTRODUCTION;262
13.13.3;METHODS;262
13.13.4;RESULTS AND DISCUSSION;263
13.13.5;REFERENCES;264
13.14;Chapter 75. CHANGES OF BRAIN IMMUNOREACTIVE DYNORPHIN CONTENT FOLLOWING AMYGDALOID-KINDLED AND RECCURENT SEIZURES;265
13.14.1;SUMMARY;265
13.14.2;INTRODUCTION;265
13.14.3;METHODS;265
13.14.4;RESULTS;266
13.14.5;DISCUSSION;267
13.14.6;REFERENCES;267
13.15;Chapter 76. EFFECTS OF FEEDING AND DRINKING ON IMMUNOREACTIVE BETA-ENDORPHIN AND ACTH LEVELS IN PLASMA AND HYPOTHALAMUS IN RATS.;268
13.15.1;SUMMARY;268
13.15.2;INTRODUCTION;268
13.15.3;METHODS;268
13.15.4;RESULTS;269
13.15.5;DISCUSSION;270
13.15.6;REFERENCES;270
13.16;Chapter 77. PITUITARY ENDORPHIN LEVELS FOLLOWING THE ADMINISTRATION OF BENZAMIDE SUBSTITUTES;271
13.16.1;SUMMARY;271
13.16.2;INTRODUCTION;271
13.16.3;METHODS;271
13.16.4;RESULTS;272
13.16.5;DISCUSSION;272
13.16.6;REFERENCES;273
13.17;Chapter 78. OPIOID AND DOPAMINE RECEPTOR INTERACTIONS IN MAMMALIAN BRAIN;274
13.17.1;SUMMARY;274
13.17.2;INTRODUCTION;274
13.17.3;METHODS;274
13.17.4;RESULTS;274
13.17.5;DISCUSSION;276
13.17.6;REFERENCES;276
13.18;Chapter 79. THE ROLE OF DOPAMINERGIC SYSTEM ON MORPHINE ANALGESIA IN MICE;277
13.18.1;SUMMARY;277
13.18.2;INTRODUCTION;277
13.18.3;METHODS;277
13.18.4;RESULTS;278
13.18.5;DISCUSSION;278
13.18.6;REFERENCES;279
13.19;Chapter 80. MORPHINE PRODUCES DIFFERENT EFFECTS ON SUBTYPES OF MESENCEPHALIC DOPAMINE SYSTEMS;280
13.19.1;SUMMARY;280
13.19.2;INTRODUCTION;280
13.19.3;METHODS;281
13.19.4;RESULTS;281
13.19.5;DISCUSSION;282
13.19.6;REFERENCES;283
13.20;Chapter 81. EFFECT OF ADRENERGIC DRUGS ON THE CENTRAL ANTIDIURETIC ACTION OF MORPHINE IN RATS;284
13.20.1;SUMMARY;284
13.20.2;INTRODUCTION;284
13.20.3;EXPERIMENTAL PROCEDURES;284
13.20.4;RESULTS;284
13.20.5;DISCUSSION;285
13.20.6;REFERENCES;286
13.21;Chapter 82. EFFECT OF MORPHINE ON ATP-STIMULATED 45Ca++ UPTAKE IN SUBCELLULAR FRACTIONS OF RAT BRAIN.;287
13.21.1;SUMMARY;287
13.21.2;INTRODUCTION;287
13.21.3;METHODS;287
13.21.4;RESULTS;288
13.21.5;DISCUSSION;289
13.21.6;REFERENCES;289
14;PART VII: ANALGESIA AND ACUPUNCTURE;290
14.1;Chapter 83. SPINAL MECHANISMS IN THE EFFECTS OF FENTANYL AND MORPHINE ON THE RAT TAIL FLICKa);291
14.1.1;SUMMARY;291
14.1.2;INTRODUCTION;291
14.1.3;METHODS;291
14.1.4;RESULTS;291
14.1.5;DISCUSSION;293
14.1.6;REFERENCES;293
14.2;Chapter 84. STRONG ANALGESIC ACTIVITY OF LEU-ENKEPHALIN AFTER INHIBITION OF BRAIN AMINOPEPTIDASE: A PHARMACOLOGICAL STUDY.;294
14.2.1;SUMMARY;294
14.2.2;INTRODUCTION;294
14.2.3;METHODS;295
14.2.4;RESULTS;295
14.2.5;DISCUSSION;296
14.2.6;ACKNOWLEDGEMENTS;296
14.2.7;REFERENCES;296
14.3;Chapter 85. OPIOID AND NONOPIOID MECHANISMS OF STRESS-INDUCED ANALGESIA;297
14.3.1;INTRODUCTION;297
14.3.2;CHARACTERISTICS OF OPIOID AND NONOPIOID FORMS OF STRESS-INDUCED ANALGESIA;297
14.3.3;ENDOCRINE PROCESSES MEDIATING STRESS-INDUCED ANALGESIA;298
14.3.4;ACKNOWLEDGEMENTS;299
14.3.5;REFERENCES;299
14.4;Chapter 86. ANTINOCICEPTIVE AND TOXIC ACTIVITIES OF INTRACEREBROVENTRICULARLY (ICV)ADMINISTERED MORPHINE (M) , 6-ACETYLMORPHINE (AM) AND 3,6-DIACETYLMORPHINE (DAM) IN MICE;300
14.4.1;INTRODUCTION;300
14.4.2;METHODS;300
14.4.3;RESULTS;301
14.4.4;DISCUSSION;302
14.4.5;REFERENCES;302
14.5;Chapter 87. POSSIBLE INVOLVEMENT OF INTRINSIC OPIOID PEPTIDES AND SEROTONIN IN PHENYLETHYLAMINE ANALOG-INDUCED ANALGESIA;303
14.5.1;SUMMARY;303
14.5.2;INTRODUCTION;303
14.5.3;METHODS;303
14.5.4;RESULTS;304
14.5.5;DISCUSSION;305
14.5.6;REFERENCES;305
14.6;Chapter 88. ANALGESIC PROPERTIES OF D-PHENYLALANINE, BACITRACIN AND PUROMYCIN IN MICE: RELATIONSHIP TO INHIBITION OF ENKEPHALINASE AND BETA ENDORPHINASE.;306
14.6.1;SUMMARY;306
14.6.2;INTRODUCTION;306
14.6.3;MATERIAIS AND METHODS;306
14.6.4;RESULTS;307
14.6.5;DISCUSSION;308
14.6.6;REFERENCES;308
14.7;Chapter 89. CHANGES IN ANTINOCICEPTION AFTER EXPOSURE OF ANIMALS DURING EARLY DEVELOPMENT TOCHRONIC STRESS AND CHRONIC ADMINISTRATION OF NARCOTIC ANALGESICS;309
14.7.1;SUMMARY;309
14.7.2;INTRODUCTION;309
14.7.3;METHODS;309
14.7.4;RESULTS;310
14.7.5;DISCUSSION;311
14.7.6;REFERENCES;311
14.8;Chapter 90. DYNORPHIN: DIFFERENTIAL INTERACTIONS WITH OPIATES AND PEPTIDES IN NAIVE AND MORPHINE TOLERANT MICE.;312
14.8.1;SUMMARY;312
14.8.2;INTRODUCTION;312
14.8.3;METHODS;312
14.8.4;RESULTS AND DISCUSSION;314
14.8.5;REFERENCES;314
14.9;Chapter 91. CENTRAL NOREPINEPHRINE IN ACUPUNCTURE ANALGESIA: DIFFERENTIAL EFFECTS IN BRAINAND SPINAL CORD;315
14.9.1;SUMMARY;315
14.9.2;INTRODUCTION;315
14.9.3;METHODS;315
14.9.4;RESULTS;316
14.9.5;DISCUSSION;317
14.9.6;REFERENCES;317
14.10;Chapter 92. AFFERENT AND EFFERENT PATHWAYS IN ACUPUNCTURE ANALGESIA AND THEIR CORRELATIONWITH MORPHINE ANALGESIA;318
14.10.1;SUMMARY;318
14.10.2;INTRODUCTION;318
14.10.3;METHODS;318
14.10.4;RESULTS;319
14.10.5;DISCUSSION;320
14.10.6;REFERENCES;320
14.11;Chapter 93. SUPPRESSION BY MORPHINE AND ACUPUNCTURE ON NOXIOUS INFORMATION IN THE RAT CENTRAL NERVOUS SYSTEM;321
14.11.1;SUMMARY;321
14.11.2;INTRODUCTION;321
14.11.3;METHODS;321
14.11.4;RESULTS;322
14.11.5;DISCUSSION;322
14.11.6;REFERENCES;323
14.12;CHAPTER 94. PARALLEL INDIVIDUAL VARIATIONS IN EFFECTIVENESS OF ACUPUNCTURE, MORPHINE ANALGESIA AND DORSAL PAG-SPA AND THEIR ABOLITION BY D-PHENYLALANINE;324
14.12.1;SUMMARY;324
14.12.2;INTRODUCTION;324
14.12.3;METHODS;324
14.12.4;RESULTS;324
14.12.5;DISCUSSION;325
14.12.6;REFERENCES;326
14.13;CHAPTER 95. THE ROLE OF CENTRAL 5-HYDROXYTRYPTAMINE IN ACUPUNCTURE ANALGESIA AND ACUPUNCTURE TOLERANCE;327
14.13.1;SUMMARY;327
14.13.2;INTRODUCTION;327
14.13.3;METHODS;327
14.13.4;RESULTS AND DISCUSSIONS;328
14.13.5;REFERENCES;329
14.14;CHAPTER 96. CENTRAL NOREPINEPHRINE: ITS IMPLICATION IN THE DEVELOPMENT OF ACUPUNCTURE TOLERANCE;330
14.14.1;SUMMARY;330
14.14.2;INTRODUCTION;330
14.14.3;METHODS;330
14.14.4;RESULTS AND DISCUSSIONS;331
14.14.5;REFERENCES;332
14.15;CHAPTER 97. Aß NERVE IMPULSE PRODUCES ELECTROACUPUNCTURE ANALGESIA IN RATa;333
14.15.1;SUMMARY;333
14.15.2;INTRODUCTION;333
14.15.3;METHODS;333
14.15.4;RESULTS;334
14.15.5;DISCUSSION;335
14.15.6;REFERENCES;335
14.16;CHAPTER 98. ACUPUNCTURE SUPPRESSES THE JAW OPENING REFLEX RELATED TO NOXIOUS INPUT IN RAT;336
14.16.1;SUMMARY;336
14.16.2;INTRODUCTION;336
14.16.3;METHODS;336
14.16.4;RESULTS;337
14.16.5;DISCUSSION;338
14.16.6;REFERENCES;338
14.17;CHAPTER 99. EFFECTS OF ELECTROACUPUNCTURE ON THE LEVELS OF ENDORPHIMS AND SUBSTANCE P IN HUMAN LUMBAR CSF.;339
14.17.1;SUMMARY;339
14.17.2;INTRODUCTION;339
14.17.3;METHODS;339
14.17.4;RESULTS;340
14.17.5;DISCUSSION;340
14.17.6;REFERENCES;341
14.18;CHAPTER 100. CSF ENDORPHIN LEVELS IN CHRONIC PAIN PATIENTS AND IN PATIENTS BEFORE AND AFTER APLACEBO PAIN RELIEF;342
14.18.1;SUMMARY;342
14.18.2;INTRODUCTION AND METHODS;342
14.18.3;RESULTS;343
14.18.4;DISCUSSION;344
14.18.5;REFERENCES;344
14.19;CHAPTER 101. ß-ENDORPHIN IN OBSTETRIC ANALGESIA;345
14.19.1;SUMMARY;345
14.19.2;INTRODUCTION;345
14.19.3;MATERIAL AND METHODS;345
14.19.4;RESULTS;346
14.19.5;REFERENCES;347
14.20;CHAPTER 102. DESCENDING INHIBITION IN HUMAN SPINAL CORD;348
14.20.1;SUMMARY;348
14.20.2;INTRODUCTION;348
14.20.3;METHODS;348
14.20.4;RESULTS;349
14.20.5;DISCUSSION;350
14.20.6;REFERENCES;350
15;PART VIII: BEHAVIORAL AND CLINICAL STUDIES;352
15.1;CHAPTER 103. NEUROLEPTIC-LIKE AND ANTI-PSYCHOTIC ACTION OF .-TYPE ENDORPHINS;353
15.1.1;SUMMARY;353
15.1.2;INTRODUCTION;353
15.1.3;INTERACTION BETWEEN DE.E AND APOMORPHINE;354
15.1.4;POSSIBLE MODE OF ACTION OF .-TYPE ENDORPHINS;354
15.1.5;REFERENCES;355
15.2;CHAPTER 104. MULTI-DIMENSIONAL ANALYSES OF BEHAVIOR IN MICE TREATED WITH ENDORPHINS;356
15.2.1;SUMMARY;356
15.2.2;INTRODUCTION;356
15.2.3;MATERIALS AND METHODS;356
15.2.4;RESULTS;357
15.2.5;DISCUSSION;357
15.2.6;ACKNOWLEDGEMENT;358
15.2.7;REFERENCES;358
15.3;CHAPTER 105. EFFECTS OF OPIOID DRUGS ON ACTIVE AVOIDANCE BEHAVIOR OF THE RAT;359
15.3.1;SUMMARY;359
15.3.2;INTRODUCTION;359
15.3.3;METHODS;359
15.3.4;RESULTS;360
15.3.5;DISCUSSION;361
15.3.6;REFERENCES;361
15.4;CHAPTER 106. BEHAVIORAL EFFECTS OF PROLACTIN: INVOLVEMENT OF OPIOID RECEPTORS;362
15.4.1;SUMMARY;362
15.4.2;INTRODUCTION;362
15.4.3;METHODS;362
15.4.4;RESULTS;363
15.4.5;DISCUSSION;364
15.4.6;REFERENCES;364
15.5;CHAPTER 107. INTERACTION BETWEEN MORPHINE AND PHENCYCLIDINE: INTOXICATION AND CROSS-TOLERANCE;365
15.5.1;SUMMARY;365
15.5.2;INTRODUCTION;365
15.5.3;METHODS;366
15.5.4;RESULTS;366
15.5.5;DISCUSSION;367
15.5.6;ACKNOWLEDGMENTS;367
15.5.7;REFERENCES;367
15.6;CHAPTER 108. ENKEPHALINERGIC MODULATION OF CIRCLING BEHAVIOUR INDUCED BY DOPAMINE IN THENUCLEUS ACCUMBENS AND NUCLEUS CAUDATUS;368
15.6.1;SUMMARY;368
15.6.2;INTRODUCTION;368
15.6.3;METHODS;369
15.6.4;RESULTS;369
15.6.5;DISCUSSION;370
15.6.6;REFERENCES;370
15.7;CHAPTER 109. EXOGENOUS OPIOIDS AND DRINKING AND FEEDING;371
15.7.1;SUMMARY;371
15.7.2;INTRODUCTION;371
15.7.3;REGULATION OF WATER INTAKE;371
15.7.4;FEEDING AND PALATABILITY;372
15.7.5;REFERENCES;373
15.8;CHAPTER 110. UNUSUAL BEHAVIORAL PROPERTIES OF SOME NEW OPIOID PEPTIDES;374
15.8.1;SUMMARY AND INTRODUCTION;374
15.8.2;METHODS;374
15.8.3;RESULTS AND DISCUSSION;374
15.8.4;REFERENCES;376
15.9;CHAPTER 111.

THE ROLE OF ENDORPHINS IN SCHIZOPHRENIA: CLINICAL STUDIES;377
15.9.1;INTRODUCTION;377
15.9.2;CLINICAL INVESTIGATIONS;377
15.9.3;ACKNOWLEDGEMENT;379
15.9.4;REFERENCES;379
15.10;CHAPTER 112. NALOXONE REVERSES INDUCED ISCHEMIC NEUROLOGIC DEFICIT IN GERBILS;380
15.10.1;SUMMARY;380
15.10.2;INTRODUCTION;380
15.10.3;METHODS AND RESULTS;380
15.10.4;DISCUSSION;382
15.10.5;REFERENCES;382
15.11;CHAPTER 113. NALTREXONE AND PSYCHOTHERAPY;383
15.11.1;SUMMARY;383
15.11.2;INTRODUCTION;383
15.11.3;METHODS;383
15.11.4;RESULTS;384
15.11.5;DISCUSSION;385
15.11.6;REFERENCES;385
15.11.7;ACKNOWLEDGMENTS;385
15.12;CHAPTER 114. PATIENT CONTROL OF METHADONE MAINTENANCE DOSE;386
15.12.1;INTRODUCTION;386
15.12.2;METHODS;386
15.12.3;RESULTS;387
15.12.4;REFERENCES;388
15.12.5;ACKNOWLEDGEMENTS;388
15.13;CHAPTER 115. LAAM INSTEAD OF TAKE-HOME METHADONE;389
15.13.1;INTRODUCTION;389
15.13.2;METHODS;389
15.13.3;RESULTS;389
15.13.4;CONCLUSIONS;390
15.13.5;REFERENCES;390
15.14;CHAPTER 116. EFFECTS OF CHRONIC EXOGENOUS OPIOID ADMINISTRATION ON LEVELS OF ONE ENDOGENOUS OPIOID (ß-ENDORPHIN) IN MAN;391
15.14.1;SUMMARY;391
15.14.2;INTRODUCTION;391
15.14.3;METHODS;391
15.14.4;RESULTS;392
15.14.5;DISCUSSION;392
15.14.6;REFERENCES;392
15.15;CHAPTER 117. NALOXONE AND THYROTROPIN RELEASING HORMONE HAVE ADDITIVE EFFECTS IN REVERSING ENDOTOXIC SHOCK*;394
15.15.1;SUMMARY;394
15.15.2;INTRODUCTION;394
15.15.3;METHODS;394
15.15.4;RESULTS;395
15.15.5;DISCUSSION;396
15.15.6;REFERENCES;396
15.16;CHAPTER 118. THE ROLE OF ENKEPHALINS IN BLOOD PRESSURE IN THE BRAIN;397
15.16.1;SUMMARY;397
15.16.2;INTRODUCTION;397
15.16.3;METHODS;398
15.16.4;RESULTS;398
15.16.5;DISCUSSION;398
15.16.6;REFERENCES;399
16;PART IX: STRUCTURE-ACTIVITY RELATIONSHIPS OF OPIOIDS;400
16.1;CHAPTER 119. ACTIVE SITES IN THE ß-ENDORPHIN STRUCTURE FOR ACTIVATION OF THE EPSILON-OPIATERECEPTOR;401
16.1.1;SUMMARY;401
16.1.2;INTRODUCTION;401
16.1.3;EXPERIMENTAL PROCEDURES;401
16.1.4;RESULTS;401
16.1.5;DISCUSSION;402
16.1.6;ACKNOWLEDGEMENTS;403
16.1.7;REFERENCES;403
16.2;CHAPTER 120. CRITICAL COMPONENTS OF OPIOID PEPTIDES FOR SPECIFIC RECOGNITION OF µ AND d RECEPTORS;404
16.2.1;SUMMAR;404
16.2.2;INTRODUCTION;404
16.2.3;MATERIALS AND METHODS;404
16.2.4;RESULTS AND DISCUSSION;405
16.2.5;CONCLUS ION;406
16.2.6;REFERENCES;406
16.3;CHAPTER 121. HIGHLY ACTIVE DIPEPTIDE AND TRIPEPTIDE ENKEPHALIN ANALOGS;407
16.3.1;SUMMARY;407
16.3.2;INTRODUCTION;407
16.3.3;METHODS;407
16.3.4;RESULTS;408
16.3.5;DISCUSSION;409
16.3.6;REFERENCES;409
16.4;CHAPTER 122. TWO NEW CLASSES OF CYCLIC ENKEPHALIN ANALOGS WITH HIGH POTENCY AND SPECIFICITY FOR µ-RECEPTORS;410
16.4.1;SUMMARY;410
16.4.2;INTRODUCTION;410
16.4.3;RESULTS AND DISCUSSION;410
16.4.4;ACKNOWLEDGEMENTS;412
16.4.5;REFERENCES;412
16.5;CHAPTER 123. "MINIMAL SEGMENT" OF ENKEPHALIN FOR ANALGESIA: SYNDYPHALIN (SD)-33, A SIMPLE TRIPEPTIDE ALKYLAMIDE WITH PROLONGED SUBCUTANEOUS ANALGESIC ACTIVITY;413
16.5.1;SUMMARY;413
16.5.2;INTRODUCTION;413
16.5.3;MATERIALS & METHODS;414
16.5.4;RESULTS & DISCUSSION;415
16.5.5;REFERENCES;415
16.6;CHAPTER 124. THE ANALGESIC EFFECTS OF CYCLIC DIPEPTIDES BY INTRACEREBRAL ADMINISTRATION IN CONSCIOUS MICE AND RATS;416
16.6.1;SUMMARY;416
16.6.2;INTRODUCTION;416
16.6.3;METHODS;417
16.6.4;RESULTS;417
16.6.5;DISCUSSION;418
16.6.6;REFERENCES;418
16.7;CHAPTER 125. SYNTHETIC OPIOID a-CASEIN PEPTIDES. STRUCTURE ACTIVITY RELATIONSHIP;419
16.7.1;SUMMARY;419
16.7.2;INTRODUCTION;419
16.7.3;METHODS;420
16.7.4;RESULTS;420
16.7.5;DISCUSSION;421
16.7.6;REFERENCES;422
16.8;CHAPTER 126. SOME STRUCTURE-ACTIVITY RELATIONSHIPS IN THE 2I-MERCAPTOBENZOMORPHAN SERIES;423
16.8.1;SUMMARY;423
16.8.2;INTRODUCTION;423
16.8.3;SYNTHESIS;423
16.8.4;METHOD;424
16.8.5;RESULTS AND DISCUSSION;424
16.9;CHAPTER 127. CHEMICAL STRUCTURE AND PHARMACOLOGICAL ACTIVITIES OF DIPHENYLETHYLPIPERAZINE DERIVATIVES;426
16.9.1;SUMMARY;426
16.9.2;INTRODUCTION;426
16.9.3;METHODS;426
16.9.4;RESULTS;427
16.9.5;DISCUSSION;428
16.9.6;REFERENCES;428
16.10;CHAPTER 128. PERIPHERAL SELECTIVITY OF QUATERNARY NARCOTIC ANTAGONISTS:RELATIVE ABILITY TO PREVENT GASTROINTESTINAL TRANSIT INHIBITION AND ANTINOCICEPTION IN MORPHINIZED RATS.a);429
16.10.1;SUMMARY;429
16.10.2;INTRODUCTION;429
16.10.3;METHODS;429
16.10.4;RESULTS AND DISCUSSION;431
16.10.5;REFERENCES;431
16.11;CHAPTER 129. STRUCTURE-ACTIVITY RELATIONSHIP STUDY OF AFFINITY LABELS THAT ARE SPECIFICFOR µ OPIOID RECEPTORS;432
16.11.1;SUMMARY;432
16.11.2;INTRODUCTION;432
16.11.3;METHODS;432
16.11.4;RESULTS;433
16.11.5;DISCUSSION;433
16.11.6;REFERENCES;434
16.12;CHAPTER 130. ARYLAZIDO-DERIVATIVES OF 14ß-AMINOMORPHINONE : POTENTIAL PHOTOAFFINITY LIGANDSFOR OPIATE RECEPTORS;435
16.12.1;SUMMARY;435
16.12.2;METHODS;435
16.12.3;RESULTS AND DISCUSSION;437
16.12.4;REFERENCES;437
16.13;CHAPTER 131. ANTAGONIST-AGONIST ACTIVITY OF SOME N-SUBSTITUTED BENZOMORPHANS;438
16.13.1;SUMMARY;438
16.13.2;INTRODUCTION;438
16.13.3;METHOD;438
16.13.4;RESULTS AND DISCUSSION;439
16.14;CHAPTER 132. THE ACTION OF 2-AMINOTETRALIN (2-AT) DERIVATIVES ON HUMAN PLASMA CHOLINESTERASE(HPC);441
16.14.1;SUMMARY;441
16.14.2;INTRODUCTION;441
16.14.3;METHODS;442
16.14.4;RESULTS;442
16.14.5;DISCUSSION;443
16.14.6;REFERENCES;443
16.15;CHAPTER 133. HOW QUANTUM CHEMISTRY CAN DELINEATE THE DIFFERING MOLECULAR REQUISITES FORINTERACTION WITH µ, d, ., s AND OTHER OPIATE RECEPTORS;444
16.15.1;SUMMARY;444
16.15.2;DISCUSSION;444
16.15.3;REFERENCES;446
17;PART X: TOLERANCE AND PHYSICAL DEPENDENCE;448
17.1;CHAPTER 134. OPIATE AND CLONIDINE DEPENDENCE IN THE FINAL CHOLINERGIC MOTONEURONE OF THEGUINEA-PIG ISOLATED ILEUM;449
17.1.1;SUMMARY;449
17.1.2;INTRODUCTION;449
17.1.3;OPIATE DEPENDENCE IN THE MYENTERIC PLEXUS;449
17.1.4;CLONIDINE DEPENDENCE IN THE FCMN;450
17.1.5;RATE OF OPIATE DEPENDENCE INDUCTION;451
17.1.6;REFERENCES;451
17.2;CHAPTER 135. CROSS-TOLERANCE AND CROSS-DEPENDENCE ON MULTIPLE OPIATE RECEPTORS OF THE GUINEAPIG ILEUM;452
17.2.1;SUMMARY;452
17.2.2;INTRODUCTION;452
17.2.3;METHODS;452
17.2.4;RESULTS;453
17.2.5;DISCUSSION;454
17.2.6;REFERENCES;454
17.3;CHAPTER 136. PROPERTIES OF OPIATE RECEPTOR BINDING IN AN OPIATE TOLERANT STATE;455
17.3.1;SUMMARY;455
17.3.2;INTRODUCTION;455
17.3.3;METHODS;455
17.3.4;RESULTS;456
17.3.5;DISCUSSION;457
17.3.6;REFERENCES;457
17.4;CHAPTER 137. IMPORTANCE OF OPIATE RECEPTORS OF THE SUBSTANTIA GELATINOSA TO MORPHINETOLERANCE AND DEPENDENCE OF CAT DORSAL HORN NEURONES;458
17.4.1;SUMMARY;458
17.4.2;INTRODUCTION;458
17.4.3;METHODS;458
17.4.4;RESULTS AND DISCUSSION;458
17.4.5;REFERENCES;460
17.5;CHAPTER 138. TOLERANCE TO ELECTROACUPUNCTURE AND ITS CROSS TOLERANCE TO MORPHINE;461
17.5.1;SUMMARY;461
17.5.2;INTRODUCTION;461
17.5.3;METHODS;461
17.5.4;RESULTS;462
17.5.5;DISCUSSION;463
17.5.6;REFERENCES;463
17.6;CHAPTER 139. ACUPUNCTURE AND MORPHINE ANALGESIA INHIBITORY SYSTEMS AND ITS CORRELATION WITHMORPHINE TOLERANCE;464
17.6.1;SUMMARY;464
17.6.2;INTRODUCTION;464
17.6.3;METHODS;464
17.6.4;RESULTS;464
17.6.5;DISCUSSION;466
17.6.6;REFERENCES;466
17.7;CHAPTER 140. PHOSPHORYLATION OF STRIATAL SYNAPTIC PLASMA MEMBRANE PROTEINS FROM MORPHINETOLERANTRATS;467
17.7.1;SUMMARY;467
17.7.2;INTRODUCTION;467
17.7.3;METHODS;468
17.7.4;RESULTS;468
17.7.5;CONCLUSION;468
17.7.6;REFERENCES;469
17.8;CHAPTER 141. PHYSICAL DEPENDENCE LIABILITY OF TETRAPEPTIDE ACYLHYDRAZIDE ANALOGS OF ENKEPHALIN IN RATS;470
17.8.1;SUMMARY;470
17.8.2;INTRODUCTION;470
17.8.3;METHODS;470
17.8.4;RESULTS;471
17.8.5;DISCUSSION;472
17.8.6;REFERENCES;472
17.9;CHAPTER 142. NAL0X0NE REVERSIBLE EFFECT OF MORPHINE ON SUBSTANCE P NEURONS IN THE RAT SPINALCORD;473
17.9.1;SUMMARY;473
17.9.2;INTRODUCTION;473
17.9.3;METHODS;473
17.9.4;RESULTS;474
17.9.5;DISCUSSION;475
17.9.6;REFERENCES;475
17.10;CHAPTER 143. INVOLVEMENT OF GABA IN THE ACUTE AND CHRONIC EFFECTS OF MORPHINE: NOCICEPTIVE GABA RELEASE AND RECEPTOR BINDING STUDIES;476
17.10.1;SUMMARY;476
17.10.2;INTRODUCTION;476
17.10.3;METHODS;477
17.10.4;RESULTS AND DISCUSSION;477
17.10.5;ACKNOWLEDGMENTS;478
17.10.6;REFERENCES;478
17.11;CHAPTER 144. THE INVOLVEMENT OF BRAIN HISTAMINERGIC MECHANISMS IN THE WITHDRAWAL PHASE OF MORPHINE DEPENDENCE;479
17.11.1;SUMMARY;479
17.11.2;INTRODUCTION;479
17.11.3;METHODS;479
17.11.4;RESULTS;480
17.11.5;DISCUSSION;481
17.11.6;REFERENCES;481
17.12;CHAPTER 145. A POTENTIATION OF PHYSICAL DEPENDENCE BY 6-CONJUGATION OF MORPHINE AND NALORPHINE;482
17.12.1;SUMMARY;482
17.12.2;INTRODUCTION;482
17.12.3;METHODS;482
17.12.4;RESULTS;482
17.12.5;DISCUSSION;484
17.12.6;REFERENCES;484
17.13;CHAPTER 146. TRANSPORT AND BINDING IN VIVO OF 3H-NALOXONE IN BRAINS OF MORPHINE DEPENDENTAND WITHDRAWN MICE;485
17.13.1;SUMMARY;485
17.13.2;INTRODUCTION;485
17.13.3;METHODS;485
17.13.4;RESULTS;486
17.13.5;DISCUSSION;487
17.13.6;REFERENCES;487
17.14;CHAPTER 147. INHIBITION OF TOLERANCE TO HUMAN BETA ENDORPHIN BY A LINEAR AND A CYCLIC PEPTIDE;488
17.14.1;SUMMARY;488
17.14.2;INTRODUCTION;488
17.14.3;METHODS;488
17.14.4;RESULTS;489
17.14.5;DISCUSSION;489
17.14.6;ACKNOWLEDGEMENT;490
17.14.7;REFERENCES;490
17.15;CHAPTER 148. DIFFERENTIAL EFFECTS OF THYROLIBERIN ON TOLERANCE TO THE ANALGESIC AND HYPOTHERMICEFFECTS OF MORPHINE IN MICE;491
17.15.1;SUMMARY;491
17.15.2;INTRODUCTION;491
17.15.3;METHODS;492
17.15.4;RESULTS;492
17.15.5;DISCUSSION;493
17.15.6;ACKNOWLEDGEMENT;493
17.15.7;REFERENCES;493
17.16;CHAPTER 149. INDUCTION OF PHYSICAL DEPENDENCE IN RATS BY SHORT TREATMENT OF MORPHINE-ADMIXED FOOD;494
17.16.1;SUMMARY;494
17.16.2;INTRODUCTION;494
17.16.3;METHODS;494
17.16.4;RESULTS;495
17.16.5;DISCUSSION;495
17.16.6;REFERENCES;495
17.17;CHAPTER 150. TOLERANCE AS THE ONLY SIGN OF WITHDRAWAL IN OPIATE DEPENDENT CHICK FETUSES;496
17.17.1;SUMMARY;496
17.17.2;INTRODUCTION;496
17.17.3;METHODS;496
17.17.4;RESULTS;497
17.17.5;DISCUSSION;498
17.17.6;REFERENCES;498
17.18;CHAPTER 151. CAFFEINE ENHANCES MORPHINE DEPENDENCE IN HUMANS;499
17.18.1;SUMMARY;499
17.18.2;INTRODUCTION;499
17.18.3;METHODS;499
17.18.4;RESULTS;500
17.18.5;DISCUSSION;501
17.18.6;REFERENCES;501
17.19;CHAPTER 152. SCHEDULE INDUCED SELF INJECTION OF HEROIN: DOSE RESPONSE RELATIONSHIPS;502
17.19.1;SUMMARY;502
17.19.2;INTRODUCTION;502
17.19.3;MATERIALS AND METHODS;503
17.19.4;RESULTS AND DISCUSSION;503
17.19.5;REFERENCES;504
17.20;CHAPTER 153. OPIATE DETOXIFICATION USING LOFEXIDINE;505
17.20.1;SUMMARY;505
17.20.2;INTRODUCTION;505
17.20.3;METHODS;505
17.20.4;RESULTS;506
17.20.5;DISCUSSION;506
17.20.6;REFERENCES;507
17.20.7;ACKNOWLEDGEMENTS;507
17.21;CHAPTER 154. DETECTION OF M0RPHINONE AS A NEW METABOLITE OF MORPHINE IN GUINEA PIG URINE;508
17.21.1;SUMMARY;508
17.21.2;INTRODUCTION;508
17.21.3;METHOD;508
17.21.4;RESULTS;509
17.21.5;DISCUSSION;510
17.21.6;REFERENCES;510
17.22;CHAPTER 155. KETAMINE-LIKE DISCRIMINATIVE CHARACTERISTICS OF THE STEREOISOMERS OFMETAZOCINE, CTCLAZOCINE, AND SKF 10,047 IN RHESUS MONKEYS;511
17.22.1;SUMMARY;511
17.22.2;IMTODUCTION;511
17.22.3;METHODS;512
17.22.4;RESULTS;512
17.22.5;DISCUSSION;512
17.22.6;REFERENCES;513
17.23;CHAPTER 156. CONCLUDING REMARKS;514
18;Author Index;518



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.