E-Book, Englisch, Band Volume 28, 400 Seiten
Reihe: The Enzymes
Tamanoi Structure, Function and Regulation of TOR complexes from Yeasts to Mammals
1. Auflage 2010
ISBN: 978-0-12-381006-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Part B
E-Book, Englisch, Band Volume 28, 400 Seiten
Reihe: The Enzymes
ISBN: 978-0-12-381006-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This volume of The Enzymes features high-caliber thematic articles on the topic of glycosylphosphatidylinositol (GPI) anchoring of proteins. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;The Enzymes: Structure, Function and Regulation of TOR complexes from Yeasts to Mammals Part B;4
3;Copyright Page;5
4;Contents;6
5;Preface;12
6;Chapter 1: mTORC1-Mediated Control of Protein Translation;14
6.1;II. Introduction;14
6.2;III. mTORC1 Targets and Control of Translation;18
6.3;IV. Conclusion;28
6.4;References;28
7;Chapter 2: The TSC1-TSC2 Complex: A Key Signal-Integrating Node Upstream of TOR;34
7.1;II. Introduction;35
7.2;III. Downstream Functions: Regulation of the TOR Complexes by the TSC1-TSC2 Complex;39
7.3;IV. Upstream Regulation: The TSC1-TSC2 Complex Integrates Diverse Signals to Regulate mTORC1;43
7.4;V. Aberrant Inhibition of the TSC1-TSC2 Complex Leading to Activation of mTORC1 in the Majority of Human Tumors;51
7.5;VI. Important Outstanding Questions Concerning the TSC1-TSC2 Complex;53
7.6;References;54
8;Chapter 3: AMPK Control of mTOR Signaling and Growth;62
8.1;II. AMPK is an Energy Sensing Kinase;63
8.2;III. mTOR is a Central Conserved Regulator of Growth and Metabolism;65
8.3;IV. AMPK Inhibits mTORC1 Through Phosphorylation of TSC2 and Raptor;67
8.4;V. AMPK and mTOR Have Opposing Roles in Specialized Metabolic Tissues in Mammals;70
8.5;VI. AMPK and TOR Function in Model Organisms to Control Growth, Metabolism, Autophagy, and Aging;73
8.6;VII. Therapeutic Implications;75
8.7;VIII. Future Perspectives;79
8.8;Acknowledgments;80
8.9;References;81
9;Chapter 4: mTOR Signaling by Amino Acid Nutrients: Involvement of MAP4K3;90
9.1;II. Nutrient Signaling to mTOR: Introduction;91
9.2;III. The Sensing of Amino Acid Nutrients;92
9.3;IV. Amino Acid Transporters and mTOR Signaling;95
9.4;V. Evidence That Intracellular Signaling Molecules Relay the Presence of Amino Acid Sufficiency to mTORC1;98
9.5;VI. MAP4K3 Participates in Amino Acid Signaling and Maintenance of Cell Size;100
9.6;VII. MAP4K3 Promotes Apoptosis via Regulation of the BH3-Only Proteins;103
9.7;Acknowledgments;105
9.8;References;105
10;Chapter 5: mTORC2: The Other Facet of mTOR;112
10.1;II. Structure of mTOR Complex 2 (mTORC2);113
10.2;III. Role of mTORC2;115
10.3;IV. Regulation of mTORC2;120
10.4;V. Potential of mTOR Inhibitors in Cancer Treatment;127
10.5;References;129
11;Chapter 6: TORC2 and Chemotaxis in Dictyostelium discoideum;138
11.1;II. Introduction;139
11.2;III. The Life Cycle of D. discoideum;140
11.3;IV. The Components of TORC2-PDK-PKB Pathway in D. discoideum;141
11.4;V. The Signal Transduction Pathway for Chemotaxis;146
11.5;VI. Conclusion;152
11.6;Acknowledgments;153
11.7;References;153
12;Chapter 7: The TOR-Mediated Regulation of Autophagy in the Yeast Saccharomyces cerevisiae;156
12.1;II. Autophagy and ATG Genes in Yeast;157
12.2;III. Induction of Autophagy by Nutrient Limitation;157
12.3;IV. Induction of Autophagy by TOR Inactivation;161
12.4;V. Regulation of Atg1 Kinase Complex by TOR Complex1;162
12.5;VI. Phosphorylation of Atg13 by TORC1 to Regulate Autophagy;168
12.6;VII. ULK Complex: Mammalian Counterpart of Yeast Atg1 Complex;170
12.7;VIII. Concluding Remarks;171
12.8;Acknowledgments;173
12.9;References;173
13;Chapter 8: Conservation of the Tsc/Rheb/TORC1/S6K/S6 Signaling in Fission Yeast;180
13.1;II. Introduction;181
13.2;III. Overview of the TSC/Rheb/TORC1 Signaling in Fission Yeast;182
13.3;IV. PAS Assay and Detection of S6 in Fission Yeast;186
13.4;V. S6 Kinase in Fission Yeast;190
13.5;VI. Regulation of the TORC1 Signaling;191
13.6;VII. Effect of Rapamycin on the TORC1 Signaling;192
13.7;VIII. Future Prospects;195
13.8;Acknowledgments;195
13.9;References;195
14;Chapter 9: The Systemic Control of Growth, Physiology, and Behavior by TOR Signaling in Drosophila;202
14.1;II. Introduction;202
14.2;III. Growth Rate;204
14.3;IV. Developmental Timing;208
14.4;V. Feeding Behavior;210
14.5;VI. Fertility;211
14.6;VII. Control of Lifespan;213
14.7;References;214
15;Chapter 10: Cell-Intrinsic Functions and Regulation of TOR Signaling in Drosophila;218
15.1;II. Introduction;219
15.2;III. Genetic Screens: Identification of Network Components and Their Relationships;219
15.3;IV. Identification and Analysis of TOR-Dependent Cellular Functions in Drosophila;223
15.4;References;227
16;Chapter 11: TOR Signaling and Cell Death;230
16.1;II. Introduction: Overview of the TOR Signaling Pathway;231
16.2;III. Anti-Cell Death Functions of TOR;233
16.3;IV. Cell Death Associated with the Upregulation of TOR;239
16.4;V. Autophagy Protects Cells from Neurodegenerative Diseases;244
16.5;VI. Conclusions and Prospectives;251
16.6;References;252
17;Chapter 12: Elucidating TOR Signaling in Chlamydomonas reinhardtii;258
17.1;II. Introduction;259
17.2;III. Inhibition of TOR Signaling by Rapamycin in Chlamydomonas;260
17.3;IV. TOR Complexes;262
17.4;V. Control of Autophagy by TOR;267
17.5;VI. Perspectives;270
17.6;Acknowledgments;270
17.7;References;271
18;Chapter 13: mTORC1 and mTORC2 in Energy Homeostasis;276
18.1;II. Introduction;276
18.2;III. mTORC1 in the Hypothalamus;277
18.3;IV. mTORC1 in Pancreatic beta-Cells;280
18.4;V. mTORC1 and mTORC2 in Adipose Tissue;281
18.5;VI. mTORC1 and mTORC2 in Muscle;283
18.6;VII. mTORC1 in the Liver;284
18.7;VIII. Conclusion;286
18.8;Acknowledgments;286
18.9;References;286
19;Chapter 14: TOR Signaling and Aging;292
19.1;II. Introduction;293
19.2;III. TOR and Aging in S. cerevisiae;293
19.3;IV. TOR and Aging in C. elegans;298
19.4;V. TOR and Aging in Drosophila;302
19.5;VI. TOR and Aging in Mammals;304
19.6;VII. Conclusion and Future Perspectives;306
19.7;Acknowledgments;307
19.8;References;307
20;Chapter 15: mTOR Signaling and Human Cancer;314
20.1;II. Introduction;315
20.2;III. Frequent Activation of the mTOR Signaling in Human Cancer;316
20.3;IV. Identification of mTOR Mutations in Human Cancer;319
20.4;V. Inhibitors of the mTOR Signaling;322
20.5;VI. Future Prospects;326
20.6;Acknowledgment;327
20.7;References;327
21;Chapter 16: Systems Biology and TOR: Past, Present, and Future;330
21.1;II. Introduction;331
21.2;III. Genome-Wide Approach to Defining the TOR Network;333
21.3;IV. Integration of Data;346
21.4;V. Computational Modeling and Prediction;349
21.5;VI. Future: TOR and Cancer;352
21.6;References;355
22;Author Index;362
23;Index;394