Tamanoi | Structure, Function and Regulation of TOR complexes from Yeasts to Mammals | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 28, 400 Seiten

Reihe: The Enzymes

Tamanoi Structure, Function and Regulation of TOR complexes from Yeasts to Mammals

Part B
1. Auflage 2010
ISBN: 978-0-12-381006-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Part B

E-Book, Englisch, Band Volume 28, 400 Seiten

Reihe: The Enzymes

ISBN: 978-0-12-381006-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This volume of The Enzymes features high-caliber thematic articles on the topic of glycosylphosphatidylinositol (GPI) anchoring of proteins. - Contributions from leading authorities - Informs and updates on all the latest developments in the field

Tamanoi Structure, Function and Regulation of TOR complexes from Yeasts to Mammals jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;The Enzymes: Structure, Function and Regulation of TOR complexes from Yeasts to Mammals Part B;4
3;Copyright Page;5
4;Contents;6
5;Preface;12
6;Chapter 1: mTORC1-Mediated Control of Protein Translation;14
6.1;II. Introduction;14
6.2;III. mTORC1 Targets and Control of Translation;18
6.3;IV. Conclusion;28
6.4;References;28
7;Chapter 2: The TSC1-TSC2 Complex: A Key Signal-Integrating Node Upstream of TOR;34
7.1;II. Introduction;35
7.2;III. Downstream Functions: Regulation of the TOR Complexes by the TSC1-TSC2 Complex;39
7.3;IV. Upstream Regulation: The TSC1-TSC2 Complex Integrates Diverse Signals to Regulate mTORC1;43
7.4;V. Aberrant Inhibition of the TSC1-TSC2 Complex Leading to Activation of mTORC1 in the Majority of Human Tumors;51
7.5;VI. Important Outstanding Questions Concerning the TSC1-TSC2 Complex;53
7.6;References;54
8;Chapter 3: AMPK Control of mTOR Signaling and Growth;62
8.1;II. AMPK is an Energy Sensing Kinase;63
8.2;III. mTOR is a Central Conserved Regulator of Growth and Metabolism;65
8.3;IV. AMPK Inhibits mTORC1 Through Phosphorylation of TSC2 and Raptor;67
8.4;V. AMPK and mTOR Have Opposing Roles in Specialized Metabolic Tissues in Mammals;70
8.5;VI. AMPK and TOR Function in Model Organisms to Control Growth, Metabolism, Autophagy, and Aging;73
8.6;VII. Therapeutic Implications;75
8.7;VIII. Future Perspectives;79
8.8;Acknowledgments;80
8.9;References;81
9;Chapter 4: mTOR Signaling by Amino Acid Nutrients: Involvement of MAP4K3;90
9.1;II. Nutrient Signaling to mTOR: Introduction;91
9.2;III. The Sensing of Amino Acid Nutrients;92
9.3;IV. Amino Acid Transporters and mTOR Signaling;95
9.4;V. Evidence That Intracellular Signaling Molecules Relay the Presence of Amino Acid Sufficiency to mTORC1;98
9.5;VI. MAP4K3 Participates in Amino Acid Signaling and Maintenance of Cell Size;100
9.6;VII. MAP4K3 Promotes Apoptosis via Regulation of the BH3-Only Proteins;103
9.7;Acknowledgments;105
9.8;References;105
10;Chapter 5: mTORC2: The Other Facet of mTOR;112
10.1;II. Structure of mTOR Complex 2 (mTORC2);113
10.2;III. Role of mTORC2;115
10.3;IV. Regulation of mTORC2;120
10.4;V. Potential of mTOR Inhibitors in Cancer Treatment;127
10.5;References;129
11;Chapter 6: TORC2 and Chemotaxis in Dictyostelium discoideum;138
11.1;II. Introduction;139
11.2;III. The Life Cycle of D. discoideum;140
11.3;IV. The Components of TORC2-PDK-PKB Pathway in D. discoideum;141
11.4;V. The Signal Transduction Pathway for Chemotaxis;146
11.5;VI. Conclusion;152
11.6;Acknowledgments;153
11.7;References;153
12;Chapter 7: The TOR-Mediated Regulation of Autophagy in the Yeast Saccharomyces cerevisiae;156
12.1;II. Autophagy and ATG Genes in Yeast;157
12.2;III. Induction of Autophagy by Nutrient Limitation;157
12.3;IV. Induction of Autophagy by TOR Inactivation;161
12.4;V. Regulation of Atg1 Kinase Complex by TOR Complex1;162
12.5;VI. Phosphorylation of Atg13 by TORC1 to Regulate Autophagy;168
12.6;VII. ULK Complex: Mammalian Counterpart of Yeast Atg1 Complex;170
12.7;VIII. Concluding Remarks;171
12.8;Acknowledgments;173
12.9;References;173
13;Chapter 8: Conservation of the Tsc/Rheb/TORC1/S6K/S6 Signaling in Fission Yeast;180
13.1;II. Introduction;181
13.2;III. Overview of the TSC/Rheb/TORC1 Signaling in Fission Yeast;182
13.3;IV. PAS Assay and Detection of S6 in Fission Yeast;186
13.4;V. S6 Kinase in Fission Yeast;190
13.5;VI. Regulation of the TORC1 Signaling;191
13.6;VII. Effect of Rapamycin on the TORC1 Signaling;192
13.7;VIII. Future Prospects;195
13.8;Acknowledgments;195
13.9;References;195
14;Chapter 9: The Systemic Control of Growth, Physiology, and Behavior by TOR Signaling in Drosophila;202
14.1;II. Introduction;202
14.2;III. Growth Rate;204
14.3;IV. Developmental Timing;208
14.4;V. Feeding Behavior;210
14.5;VI. Fertility;211
14.6;VII. Control of Lifespan;213
14.7;References;214
15;Chapter 10: Cell-Intrinsic Functions and Regulation of TOR Signaling in Drosophila;218
15.1;II. Introduction;219
15.2;III. Genetic Screens: Identification of Network Components and Their Relationships;219
15.3;IV. Identification and Analysis of TOR-Dependent Cellular Functions in Drosophila;223
15.4;References;227
16;Chapter 11: TOR Signaling and Cell Death;230
16.1;II. Introduction: Overview of the TOR Signaling Pathway;231
16.2;III. Anti-Cell Death Functions of TOR;233
16.3;IV. Cell Death Associated with the Upregulation of TOR;239
16.4;V. Autophagy Protects Cells from Neurodegenerative Diseases;244
16.5;VI. Conclusions and Prospectives;251
16.6;References;252
17;Chapter 12: Elucidating TOR Signaling in Chlamydomonas reinhardtii;258
17.1;II. Introduction;259
17.2;III. Inhibition of TOR Signaling by Rapamycin in Chlamydomonas;260
17.3;IV. TOR Complexes;262
17.4;V. Control of Autophagy by TOR;267
17.5;VI. Perspectives;270
17.6;Acknowledgments;270
17.7;References;271
18;Chapter 13: mTORC1 and mTORC2 in Energy Homeostasis;276
18.1;II. Introduction;276
18.2;III. mTORC1 in the Hypothalamus;277
18.3;IV. mTORC1 in Pancreatic beta-Cells;280
18.4;V. mTORC1 and mTORC2 in Adipose Tissue;281
18.5;VI. mTORC1 and mTORC2 in Muscle;283
18.6;VII. mTORC1 in the Liver;284
18.7;VIII. Conclusion;286
18.8;Acknowledgments;286
18.9;References;286
19;Chapter 14: TOR Signaling and Aging;292
19.1;II. Introduction;293
19.2;III. TOR and Aging in S. cerevisiae;293
19.3;IV. TOR and Aging in C. elegans;298
19.4;V. TOR and Aging in Drosophila;302
19.5;VI. TOR and Aging in Mammals;304
19.6;VII. Conclusion and Future Perspectives;306
19.7;Acknowledgments;307
19.8;References;307
20;Chapter 15: mTOR Signaling and Human Cancer;314
20.1;II. Introduction;315
20.2;III. Frequent Activation of the mTOR Signaling in Human Cancer;316
20.3;IV. Identification of mTOR Mutations in Human Cancer;319
20.4;V. Inhibitors of the mTOR Signaling;322
20.5;VI. Future Prospects;326
20.6;Acknowledgment;327
20.7;References;327
21;Chapter 16: Systems Biology and TOR: Past, Present, and Future;330
21.1;II. Introduction;331
21.2;III. Genome-Wide Approach to Defining the TOR Network;333
21.3;IV. Integration of Data;346
21.4;V. Computational Modeling and Prediction;349
21.5;VI. Future: TOR and Cancer;352
21.6;References;355
22;Author Index;362
23;Index;394



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.