Tan / Shi | Advances in Swarm Intelligence | Buch | 978-981-950984-3 | www.sack.de

Buch, Englisch, 321 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 522 g

Reihe: Lecture Notes in Computer Science

Tan / Shi

Advances in Swarm Intelligence

16th International Conference on Swarm Intelligence, ICSI 2025, Yokohama, Japan, July 11-15, 2025, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-981-950984-3
Verlag: Springer

16th International Conference on Swarm Intelligence, ICSI 2025, Yokohama, Japan, July 11-15, 2025, Proceedings, Part II

Buch, Englisch, 321 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 522 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-950984-3
Verlag: Springer


This two-volume set LNCS 16011 and 16012 constitutes the refereed post-conference proceedings of the 16th International Conference on Advances in Swarm Intelligence, ICSI 2025, held in Yokohama, Japan, during July 11-15, 2025.

The 54 revised full papers presented in these proceedings were carefully reviewed and selected from 116 submissions. The papers are organized in the following topical sections: Particle Swarm Optimization; Swarm Optimization Algorithms; Swarm of Large Language Models; Agent and Multi-agents; Vehicle Routing; Multiobjective Optimization; Approaches for Classification and Feature Selection; Prediction and Detection Algorithms; Machine Learning.

Tan / Shi Advances in Swarm Intelligence jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- Multiobjective Optimization.

.- Enhanced Multi-objective Particle Swarm Optimization Algorithms.

.- Evolutionary Multiobjective Optimization of Mixed Neural Network
Controllers for Hexapod Robot Locomotion Control.

.- Entropy-Informed Stochastic Improvement for Indicator-Based
Multiobjective Optimization.

.- LA-NSGA-II: A Multi-Objective Evolutionary Approach for Patient
Referral Optimization in Integrated Healthcare Networks.

.- Constrained Multimodal Multi-objective Optimization Algorithm
Based on Improved PPS Framework.

.- A Constrained Multi-Objective Differential Evolution Algorithm Based
on Evolutionary Multi-Task Optimization.

.- Approaches for Classification and Feature Selection.

.- Comparative Analysis of Segmentation and Classification Models of
Retinopathies in Ophthalmological Images.

.- Integration of Magnetic Resonance Imaging and Neuropsychological
Data for Automated Parkinson’s Diagnosis.

.- Integrating Multi-modal Contrastive Learning and Multi-scale Feature
Extractor for Liver Cancer Classification.

.- Optimization of Classification Models for Heart Disease: Comparison
between Feature Selection and Dimensionality Reduction Techniques.

.- Enhanced Differential Evolution-Based Multi-modal Feature Selection
in Power Equipment Defect Detection.

.- Multi-Strategy Improved Pelican Optimization Algorithm for Solving
Minimal Attribute Reduction Problem.

.- Prediction and Detection Algorithms.

.- An Efficient Neural Network-based Mathematical Modelling for Iron
Ore Quality Prediction.

.- How Data Missing Affects Stability of Feature Selection: An Empirical
Study.

.- Research on Sound Source Identification Method for Beach Search and
Rescue Based on Convolutional Neural Network.

.- A Mutual Information-based Adaptive Large Neighborhood Search
for Solving Inventory-constrained Cigarette Formulation Maintenance
Problem.

.- Ingredient Detection from Low-Quality Images of Food Labels.

.- From Single-tasking Swarming to Multi-tasking Heterogeneous
Swarming for Solving Non-uniform Area Coverage Problems.

.- A Lightweight YOLOv11-based Model with Small Object Enhance
Pyramid for Underwater Object Detection in Aerial Imagery.

.- Machine Learning.

.- Dual-Path Optimization for Open-World Test Time Training.

.- Distributed Geometric Control of Underactuated UAVs for Cooperative
Transportation.

.- Design and Implementation of Risk Control Model and Scenario
Adaptation Method Based on Graph Machine Learning.

.- Incremental Update Strategy for Continuous Action Iterated
Hierarchical Dilemma.

.- Modeling of Parent-Child Interaction through Facial Expressions for
Childcare Support Systems.

.- Fast Symbolic Regression Benchmarking.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.