Terrell | Stability and Stabilization | E-Book | sack.de
E-Book

E-Book, Englisch, 480 Seiten

Terrell Stability and Stabilization

An Introduction
1. Auflage 2009
ISBN: 978-1-4008-3335-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

An Introduction

E-Book, Englisch, 480 Seiten

ISBN: 978-1-4008-3335-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



No detailed description available for "Stability and Stabilization".

Terrell Stability and Stabilization jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


List of Figures xi

Preface xiii

Chapter 1: Introduction 1

1.1 Open Loop Control 1

1.2 The Feedback Stabilization Problem 2

1.3 Chapter and Appendix Descriptions 5

1.4 Notes and References 11

Chapter 2: Mathematical Background 12

2.1 Analysis Preliminaries 12

2.2 Linear Algebra and Matrix Algebra 12

2.3 Matrix Analysis 17

2.4 Ordinary Differential Equations 30

2.4.1 Phase Plane Examples: Linear and Nonlinear 35

2.5 Exercises 44

2.6 Notes and References 48

Chapter 3: Linear Systems and Stability 49

3.1 The Matrix Exponential 49

3.2 The Primary Decomposition and Solutions of LTI Systems 53

3.3 Jordan Form and Matrix Exponentials 57

3.3.1 Jordan Form of Two-Dimensional Systems 58

3.3.2 Jordan Form of n-Dimensional Systems 61

3.4 The Cayley-Hamilton Theorem 67

3.5 Linear Time Varying Systems 68

3.6 The Stability Definitions 71

3.6.1 Motivations and Stability Definitions 71

3.6.2 Lyapunov Theory for Linear Systems 73

3.7 Exercises 77

3.8 Notes and References 81

Chapter 4: Controllability of Linear Time Invariant Systems 82

4.1 Introduction 82

4.2 Linear Equivalence of Linear Systems 84

4.3 Controllability with Scalar Input 88

4.4 Eigenvalue Placement with Single Input 92

4.5 Controllability with Vector Input 94

4.6 Eigenvalue Placement with Vector Input 96

4.7 The PBH Controllability Test 99

4.8 Linear Time Varying Systems: An Example 103

4.9 Exercises 105

4.10 Notes and References 108

Chapter 5: Observability and Duality 109

5.1 Observability, Duality, and a Normal Form 109

5.2 Lyapunov Equations and Hurwitz Matrices 117

5.3 The PBH Observability Test 118

5.4 Exercises 121

5.5 Notes and References 123

Chapter 6: Stabilizability of LTI Systems 124

6.1 Stabilizing Feedbacks for Controllable Systems 124

6.2 Limitations on Eigenvalue Placement 128

6.3 The PBH Stabilizability Test 133

6.4 Exercises 134

6.5 Notes and References 136

Chapter 7: Detectability and Duality 138

7.1 An Example of an Observer System 138

7.2 Detectability, the PBH Test, and Duality 142

7.3 Observer-Based Dynamic Stabilization 145

7.4 Linear Dynamic Controllers and Stabilizers 147

7.5 LQR and the Algebraic Riccati Equation 152

7.6 Exercises 156

7.7 Notes and References 159

Chapter 8: Stability Theory 161

8.1 Lyapunov Theorems and Linearization 161

8.1.1 Lyapunov Theorems 162

8.1.2 Stabilization from the Jacobian Linearization 171

8.1.3 Brockett's Necessary Condition 172

8.1.4 Examples of Critical Problems 173

8.2 The Invariance Theorem 176

8.3 Basin of Attraction 181

8.4 Converse Lyapunov Theorems 183

8.5 Exercises 183

8.6 Notes and References 187

Chapter 9: Cascade Systems 189

9.1 The Theorem on Total Stability 189

9.1.1 Lyapunov Stability in Cascade Systems 192

9.2 Asymptotic Stability in Cascades 193

9.2.1 Examples of Planar Systems 193

9.2.2 Boundedness of Driven Trajectories 196

9.2.3 Local Asymptotic Stability 199

9.2.4 Boundedness and Global Asymptotic Stability 202

9.3 Cascades by Aggregation 204

9.4 Appendix: The Poincar´e-Bendixson Theorem 207

9.5 Exercises 207

9.6 Notes and References 211

Chapter 10: Center Manifold Theory 212

10.1 Introduction 212

10.1.1 An Example 212

10.1.2 Invariant Manifolds 213

10.1.3 Special Coordinates for Critical Problems 214

10.2 The Main Theorems 215

10.2.1 Definition and Existence of Center Manifolds 215

10.2.2 The Reduced Dynamics 218

10.2.3 Approximation of a Center Manifold 222

10.3 Two Applications 225

10.3.1 Adding an Integrator for Stabilization 226

10.3.2 LAS in Special Cascades: Center Manifold Argument 228

10.4 Exercises 229

10.5 Notes and References 231

Chapter 11: Zero Dynamics 233

11.1 The Relative Degree and Normal Form 233

11.2 The Zero Dynamics Subsystem 244

11.3 Zero Dynamics and Stabilization 248

11.4 Vector Relative Degree of MIMO Systems 251

11.5 Two Applications 254

11.5.1 Designing a Center Manifold 254

11.5.2 Zero Dynamics for Linear SISO Systems 257

11.6 Exercises 263

11.7 Notes and References 267

Chapter 12: Feedback Linearization of Single-Input Nonlinear Systems 268

12.1 Introduction 268

12.2 Input-State Linearization 270

12.2.1 Relative Degree n 271

12.2.2 Feedback Linearization and Relative Degree n 272

12.3 The Geometric Criterion 275

12.4 Linearizing Transformations 282

12.5 Exercises 285

12.6 Notes and References 287

Chapter 13: An Introduction to Damping Control 289

13.1 Stabilization by Damping Control 289

13.2 Contrasts with Linear Systems: Brackets, Controllability,

Stabilizability 296

13.3 Exercises 299

13.4 Notes and References 300

Chapter 14: Passivity 302

14.1 Introduction to Passivity 302

14.1.1 Motivation and Examples 302

14.1.2 Definition of Passivity 304

14.2 The KYP Characterization of Passivity 306

14.3 Positive Definite Storage 309

14.4 Passivity and Feedback Stabilization 314

14.5 Feedback Passivity 318

14.5.1 Linear Systems 321

14.5.2 Nonlinear Systems 325

14.6 Exercises 327

14.7 Notes and References 330

Chapter 15: Partially Linear Cascade Systems 331

15.1 LAS from Partial-State Feedback 331

15.2 The Interconnection Term 333

15.3 Stabilization by Feedback Passivation 336

15.4 Integrator Backstepping 349

15.5 Exercises 355

15.6 Notes and References 357

Chapter 16: Input-to-State Stability 359

16.1 Preliminaries and Perspective 359

16.2 Stability Theorems via Comparison Functions 364

16.3 Input-to-State Stability 366

16.4 ISS in Cascade Systems 372

16.5 Exercises 374

16.6 Notes and References 376

Chapter 17: Some Further Reading 378

Appendix A: Notation: A Brief Key 381

Appendix B: Analysis in R and Rn 383

B.1 Completeness and Compactness 386

B.2 Differentiability and Lipschitz Continuity 393

Appendix C: Ordinary Differential Equations 393

C.1 Existence and Uniqueness of Solutions 393

C.2 Extension of Solutions 396

C.3 Continuous Dependence 399

Appendix D: Manifolds and the Preimage Theorem; Distributions and the Frobenius Theorem 403

D.1 Manifolds and the Preimage Theorem 403

D.2 Distributions and the Frobenius Theorem 410

Appendix E: Comparison Functions and a Comparison Lemma 420

E.1 Definitions and Basic Properties 420

E.2 Differential Inequality and Comparison Lemma 424

Appendix F: Hints and Solutions for Selected Exercises 430

Bibliography 443

Index 451


William J. Terrell is associate professor of mathematics and applied mathematics at Virginia Commonwealth University. In 2000, he received a Lester R. Ford Award for excellence in expository writing from the Mathematical Association of America.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.