Torra / Kikuchi / Narukawa | Modeling Decisions for Artificial Intelligence | Buch | 978-3-031-68207-0 | sack.de

Buch, Englisch, 252 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 411 g

Reihe: Lecture Notes in Artificial Intelligence

Torra / Kikuchi / Narukawa

Modeling Decisions for Artificial Intelligence

21st International Conference, MDAI 2024, Tokyo, Japan, August 27-31, 2024, Proceedings
2024
ISBN: 978-3-031-68207-0
Verlag: Springer Nature Switzerland

21st International Conference, MDAI 2024, Tokyo, Japan, August 27-31, 2024, Proceedings

Buch, Englisch, 252 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 411 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-031-68207-0
Verlag: Springer Nature Switzerland


This book constitutes the refereed proceedings of the 21st International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2024, held in Umeå, Sweden, during August 27-30, 2024.

The 18 full papers were carefully reviewed and selected from 37 submissions. There were organized in topical headings as follows: Fuzzy measures and integrals; uncertainty in AI; clustering; and data science and data privacy.

Torra / Kikuchi / Narukawa Modeling Decisions for Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Invited paper.- Taste Media Innovative Technology Transforms the Eating Experience.- Fuzzy measures and integrals.- An axiomatic definition of non discrete Mbius transform.- Fuzzy Rough Choquet Distances.- Uncertainty in AI.- Entropies from f divergences.- Comparative Study of Methods for Estimating Interval Priority Weights Focusing on the Accuracy in Selecting the Best Alternative.- Clustering.- Sequential Cluster Extraction by Noise Clustering Based on Local Outlier Factor.- On Objective Based Clustering from the Perspective of Transportation Problem.- Data science and data privacy.- Decision Tree Based Inference of Lightning Network Client Implementations.- nuggets Data Pattern Extraction Framework in R.- User centred Argumentation Analysis of Local Explanations in Explainable AI.- Revised Margin-Maximization Method for Fuzzy Nearest Prototype Classification.- Bistochastically private release of data streams with delay.- Differentially Private Extreme Learning Machine.- Studying the impact of edge privacy on link prediction in temporal graphs.- Dissimilar Similarities Comparing Human and Statistical Similarity Evaluation in Medical AI.- On the necessity of counterfeits and deletions for continuous data publishing.- A Poisoning-Resilient LDP schema leveraging Oblivious Transfer with the Hadamard Transform.- Experimental Evaluation for Risk Assessment of Privacy Preserving Synthetic Data.- Transforming Stock Price Forecasting Deep Learning Architectures and Strategic Feature Engineering.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.