Torres del Castillo | Spinors in Four-Dimensional Spaces | Buch | 978-0-8176-4983-8 | sack.de

Buch, Englisch, Band 59, 177 Seiten, Format (B × H): 161 mm x 235 mm, Gewicht: 450 g

Reihe: Progress in Mathematical Physics

Torres del Castillo

Spinors in Four-Dimensional Spaces


2010. Auflage 2010
ISBN: 978-0-8176-4983-8
Verlag: Birkhauser Boston

Buch, Englisch, Band 59, 177 Seiten, Format (B × H): 161 mm x 235 mm, Gewicht: 450 g

Reihe: Progress in Mathematical Physics

ISBN: 978-0-8176-4983-8
Verlag: Birkhauser Boston


Without using the customary Clifford algebras frequently studied in connection with the
representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang–Mills theory, are derived in detail using illustrative examples.

Spinors in Four-Dimensional Spaces is aimed at graduate students and researchers in
mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dimensional vector space or Riemannian manifold with a definite or indefinite metric tensor. This systematic and self-contained book is suitable as a seminar text, a reference book, and a self-study guide.

Torres del Castillo Spinors in Four-Dimensional Spaces jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Spinor Algebra.-1.1 Orthogonal Groups.-1.2 Null Tetrads and the Spinor Equivalent of a Tensor.-1.3 Spinorial Representation of the Orthogonal Transformations.-1.3.1 Euclidean Signature.-1.3.2 Lorentzian Signature.-1.3.3 Ultrahyperbolic Signature.-1.4 Reflections.-1.5 Clifford Algebra. Dirac Spinors.-1.6 Inner Products. Mate of a Spinor.-1.7 Principal Spinors. Algebraic Classification.-Exercises.-2 Connection and Curvature.-2.1 Covariant Differentiation.- 2.2 Curvature.-2.2.1 Curvature Spinors.-2.2.2 Algebraic Classification of the Conformal Curvature.-2.3 Conformal Rescalings.-2.4 Killing Vectors. Lie Derivative of Spinors.-Exercises.- 3 Applications to General Relativity.-3.1 Maxwell’s Equations.-3.2 Dirac’s Equation.-3.3 Einstein’s Equations.-3.3.1 The Goldberg–Sachs Theorem.-3.3.2 Space-Times with Symmetries. Ernst Potentials.-3.4 Killing Spinors.-Exercises.-4 Further Applications.-4.1 Self-Dual Yang–Mills Fields.-4.2 H and H H Spaces.-4.3 Killing Bispinors. The Dirac Operator.-Exercises.-A Bases Induced by Coordinate Systems.-References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.