Buch, Englisch, Band 59, 177 Seiten, Format (B × H): 161 mm x 235 mm, Gewicht: 450 g
Buch, Englisch, Band 59, 177 Seiten, Format (B × H): 161 mm x 235 mm, Gewicht: 450 g
Reihe: Progress in Mathematical Physics
ISBN: 978-0-8176-4983-8
Verlag: Birkhauser Boston
Without using the customary Clifford algebras frequently studied in connection with the
representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang–Mills theory, are derived in detail using illustrative examples.
Spinors in Four-Dimensional Spaces is aimed at graduate students and researchers in
mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dimensional vector space or Riemannian manifold with a definite or indefinite metric tensor. This systematic and self-contained book is suitable as a seminar text, a reference book, and a self-study guide.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Topologie
Weitere Infos & Material
1 Spinor Algebra.-1.1 Orthogonal Groups.-1.2 Null Tetrads and the Spinor Equivalent of a Tensor.-1.3 Spinorial Representation of the Orthogonal Transformations.-1.3.1 Euclidean Signature.-1.3.2 Lorentzian Signature.-1.3.3 Ultrahyperbolic Signature.-1.4 Reflections.-1.5 Clifford Algebra. Dirac Spinors.-1.6 Inner Products. Mate of a Spinor.-1.7 Principal Spinors. Algebraic Classification.-Exercises.-2 Connection and Curvature.-2.1 Covariant Differentiation.- 2.2 Curvature.-2.2.1 Curvature Spinors.-2.2.2 Algebraic Classification of the Conformal Curvature.-2.3 Conformal Rescalings.-2.4 Killing Vectors. Lie Derivative of Spinors.-Exercises.- 3 Applications to General Relativity.-3.1 Maxwell’s Equations.-3.2 Dirac’s Equation.-3.3 Einstein’s Equations.-3.3.1 The Goldberg–Sachs Theorem.-3.3.2 Space-Times with Symmetries. Ernst Potentials.-3.4 Killing Spinors.-Exercises.-4 Further Applications.-4.1 Self-Dual Yang–Mills Fields.-4.2 H and H H Spaces.-4.3 Killing Bispinors. The Dirac Operator.-Exercises.-A Bases Induced by Coordinate Systems.-References.