Triebel | Analysis und mathematische Physik | Buch | 978-3-7643-2250-2 | www.sack.de

Buch, Deutsch, 451 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 774 g

Triebel

Analysis und mathematische Physik


3. Auflage 1989
ISBN: 978-3-7643-2250-2
Verlag: Springer

Buch, Deutsch, 451 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 774 g

ISBN: 978-3-7643-2250-2
Verlag: Springer


Von 1974 bis 1979 hatte ich an der Friedrich-Schiller-Universitat in Jena die sicherlich nicht alltagliche Gelegenheit, einen durchgehenden 10semestrigen Kurs flir Mathematikstudenten zu lesen. Entsprechend dem Studienplan hatten diese Vorlesungen verschiedene N amen (Differential- und Integralrechnung, gewohn liche Differentialgleichungen usw.), Inhalt und Zielstellung werden aber wohl am besten durch "Analysis und mathematische Physik" ausgedriickt. Das Buch ist das erweiterte Skelett dieses Kurses. Skelett insofern, als auf Beweise weitgehend verzichtet wurde (im Gegensatz zu groBen Teilen der Vorlesung). Andererseits wurden die Kapitel 27, 32 und 33 nachtraglich eingefligt. Das Ziel des Kurses ist klar, wenn man einen Blick in das Inhaltsverzeichnis dieses Buches wirft: Einerseits hat die Mathematik groBartige, elegante, in sich geschlossene Theorien entwickelt, die keiner weiteren Rechtfertigung bediirfen. Andererseits sind es oft gerade die schonsten dieser Theorien, die zugleich das Fundament bilden, auf dem klassische und moderne theoretische Physik ruhen. Es war das Ziel, nicht nur diese Fundamente zu beschreiben, sondern auch einen Eindruck von den Gebauden zu vermitteln, die iiber ihnen errichtet werden konnen. Getreu dem Hilbertschen Ideal werden hierbei mathematische Theorien und ihre physikalischen Interpretationen und Anwendungen sauberlich getrennt.

Triebel Analysis und mathematische Physik jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Zahlen und Räume.- Konvergenz und Stetigkeit.- Differential- und Integralrechnung im R 1 (Grundbegriffe).- Gewöhnliche Differentialgleichungen (Existenz- und Unitätssätze).- Elementare Funktionen und Potenzreihen.- Banachräume.- Integralrechnung im R 1 (Fortsetzung).- Differentialrechnung im R n.- Integralrechnung im R n.- Gewöhnliche Differentialgleichungen (Lösungsmethoden).- Variationsrechnung.- Prinzipien der klassischen Mechanik.- Maßtheorie.- Integrationstheorie.- Funktionentheorie.- Prinzipien der Hydrodynamik ebener Strömungen.- Elemente der Geometrie.- Orthogonalreihen.- Partielle Differentialgleichungen.- Operatoren in Banachräumen.- Operatoren in Hilberträumen.- Distributionen.- Partielle Differentialgleichungen und Distributionen.- Grundbegriffe der klassischen Feldtheorie.- Prinzipien der speziellen Relativitätstheorie und der Elektrodynamik.- Selbstadjungierte Operatoren im Hilbertraum.- Differentialoperatoren und orthogonale Funktionen.- Prinzipien der Quantenmechanik.- Geometrie auf Mannigfaltigkeiten I (Tensoren).- Allgemeine Relativitätstheorie I (Grundgleichungen).- Allgemeine Relativitätstheorie II (Singularitäten, schwarze Löcher, Kosmologie).- Geometrie auf Mannigfaltigkeiten II (Formen).- Die Wellengleichung in gekrümmten Raum-Zeiten.- Singularitätentheorie.- Katastrophen: Theorie und Anwendung.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.