U / Chen / Spaniol | Web and Big Data | Buch | 978-3-030-85895-7 | sack.de

Buch, Englisch, Band 12858, 498 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 791 g

Reihe: Lecture Notes in Computer Science

U / Chen / Spaniol

Web and Big Data

5th International Joint Conference, APWeb-WAIM 2021, Guangzhou, China, August 23-25, 2021, Proceedings, Part I
1. Auflage 2021
ISBN: 978-3-030-85895-7
Verlag: Springer International Publishing

5th International Joint Conference, APWeb-WAIM 2021, Guangzhou, China, August 23-25, 2021, Proceedings, Part I

Buch, Englisch, Band 12858, 498 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 791 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-85895-7
Verlag: Springer International Publishing


This two-volume set, LNCS 12858 and 12859, constitutes the thoroughly refereed proceedings of the 5th International Joint Conference, APWeb-WAIM 2021, held in Guangzhou, China, in August 2021.

The 44 full papers presented together with 24 short papers, and 6 demonstration papers were carefully reviewed and selected from 184 submissions. The papers are organized around the following topics: Graph Mining; Data Mining; Data Management; Topic Model and Language Model Learning; Text Analysis; Text Classification; Machine Learning; Knowledge Graph; Emerging Data Processing Techniques; Information Extraction and Retrieval; Recommender System; Spatial and Spatio-Temporal Databases; and Demo.

U / Chen / Spaniol Web and Big Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Graph Mining.- Co-Authorship Prediction Based on Temporal Graph Attention.- Degree-specific Topology Learning for Graph Convolutional Network.- Simplifying Graph Convolutional Networks as Matrix Factorization.- RASP: Graph Alignment through Spectral Signatures.- FANE: A Fusion-based Attributed Network Embedding Framework.- Data Mining.- What Have We Learned from Open Review?.- Unsafe Driving Behavior Prediction for Electric Vehicles.- Resource Trading with Hierarchical Game for Computing-Power Network Market.- Analyze and Evaluate Database-Backed Web Applications with WTool.- Semi-supervised Variational Multi-view Anomaly Detection.- A Graph Attention Network Model for GMV Forecast on Online Shopping Festival.- Suicide Ideation Detection on Social Media during COVID-19 via Adversarial and Multi-task Learning.- Data Management.- An Efficient Bucket Logging for Persistent Memory.- Data Poisoning Attacks on Crowdsourcing Learning.- Dynamic Environment Simulation for Database PerformanceEvaluation.- LinKV: an RDMA-enabled KVS for High Performance and Strict Consistency under Skew.- Cheetah: An Adaptive User-space Cache for Non-volatile Main Memory File Systems.- Topic Model and Language Model Learning.- Chinese Word Embedding Learning with Limited Data.- Sparse Biterm Topic Model for Short Texts.- EMBERT: A Pre-trained Language Model for Chinese Medical Text Mining.- Self-Supervised Learning for Semantic Sentence Matching with Dense Transformer Inference Network.- An Explainable Evaluation of Unsupervised Transfer Learning for Parallel Sentences Mining.- Text Analysis.- Leveraging Syntactic Dependency and Lexical Similarity for Neural Relation Extraction.- A Novel Capsule Aggregation Framework for Natural Language Inference.- Learning Modality-Invariant Features by Cross-Modality Adversarial Network for Visual Question Answering.- Difficulty-controllable Visual Question Generation.- Incorporating Typological Features into Language Selection for Multilingual Neural Machine Translation.- Removing Input Confounder for Translation Quality Estimation via a Causal Motivated Method.- Text Classification.- Learning Refined Features for Open-World Text Classification.- Emotion Classification of Text Based on BERT and Broad Learning System.- Improving Document-level Sentiment Classification with User-Product Gated Network.- Integrating RoBERTa Fine-Tuning and User Writing Styles for Authorship Attribution of Short Texts.- Dependency Graph Convolution and POS Tagging Transferring for Aspect-based Sentiment Classification.- Machine Learning.- DTWSSE: Data Augmentation with a Siamese Encoder for Time Series.- PT-LSTM: Extending LSTM for Efficient processing Time Attributes in Time Series Prediction.- Loss Attenuation for Time Series Prediction Respecting Categories of Values.- PFL-MoE: Personalized Federated Learning Based on Mixture of Experts.- A New Density Clustering Method using Mutual Nearest Neighbor.-



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.