Uchiya / Bai / Marsá Maestre | PRIMA 2020: Principles and Practice of Multi-Agent Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 430 Seiten

Reihe: Lecture Notes in Artificial Intelligence

Uchiya / Bai / Marsá Maestre PRIMA 2020: Principles and Practice of Multi-Agent Systems

23rd International Conference, Nagoya, Japan, November 18–20, 2020, Proceedings
1. Auflage 2021
ISBN: 978-3-030-69322-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

23rd International Conference, Nagoya, Japan, November 18–20, 2020, Proceedings

E-Book, Englisch, 430 Seiten

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-030-69322-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed proceedings of the 23rd International Conference on Principles and Practice of Multi-Agent Systems, PRIMA 2020, held in Nagoya, Japan, in November 2020. The 19 full papers presented and 13 short papers were carefully reviewed and selected from 50 submissions.

Due to COVID-19, the conference was held online.

The conference covers a wide range of ranging from foundations of agent theory and engineering aspects of agent systems, to emerging interdisciplinary areas of agent-based research.

Uchiya / Bai / Marsá Maestre PRIMA 2020: Principles and Practice of Multi-Agent Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Implementation of Real Data for Financial Market Simulation using Clustering, Deep Learning, and Artificial Financial Market.- Hybrid Dynamic Programming for Simultaneous Coalition Structure Generation and Assignment.- A Socio-Psychological Approach To Simulate Trust and Reputation in Modal Choices.- Reasoning about Trustworthiness in Cyber-Physical Systems Using Ontology-Based Representation and ASP.- Optimal Deterministic Time-based Policy in Automated Negotiation.-

Agent Simulation of Collision Avoidance based on Meta-Strategy Model.- The Smart Appliance Scheduling Problem: A Bayesian Optimization Approach.- Distance-based Heuristic Solvers for Cooperative Path Planning with Heterogeneous Agents.-

Policy Advisory Module for Exploration Hindrance Problem in Multi-agent Deep Reinforcement Learning.- Analysis of Coordination Structures of Partially Observing Cooperative Agents by Multi-Agent Deep Q-Learning.- Policy Adaptive Multi-Agent Deep Deterministic Policy Gradient.- Multi-Agent Planning with High-Level Human Guidance.- Preference Elicitation in Assumption-Based Argumentation.- Declarative Preferences in Reactive BDI Agents.- Predicting the Priority of Social Situations for Personal Assistant Agents.- Mutex Propagation for SAT-based Multi-Agent Path Finding.- A SMT-based Implementation for Safety Checking of Parameterized Multi-Agent Systems.- A Goal-Based Framework For Supporting Medical Assistance: The Case of Chronic Diseases.- Optimal Control of Pedestrian Flows by Congestion Forecasts Satisfying User Equilibrium Conditions.- Automated Negotiation Mechanism and Strategy for Compensational Vehicular Platooning.- A Cognitive Agent Framework in Information Retrieval: Using User Beliefs to Customize Results.- Deep Reinforcement Learning for Pedestrian Guidance.- NegMAS: A platform for automated negotiations.- Simulation of Unintentional Collusion Caused by Auto Pricing in Supply Chain Markets.- Construct an Artificial Population with Urban and Rural Population Differences Considered: to support long-term care system evaluation by agent-based simulation.- Multi-Agent Path Finding with Destination Choice.-

Abductive Design of BDI Agent-based Digital Twins of Organizations.- Beliefs, Time and Space: A Language for the Ykai Board Game.- Argumentation-based Explanations of Multimorbidity Treatment Plans.- The Persistence of False Memory: Brain in a Vat despite Perfect Clocks.- Box-Office Prediction Based on Essential Features Extracted from Agent-Based Modeling.- Short Duration Aggregate Statistical Model Checking for Multi-Agent Systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.