Unterhuber | Possible Worlds Semantics for Indicative and Counterfactual Conditionals? | E-Book | sack.de
E-Book

E-Book, Englisch, Band 21, 348 Seiten

Reihe: LogosISSN

Unterhuber Possible Worlds Semantics for Indicative and Counterfactual Conditionals?

A Formal Philosophical Inquiry into Chellas-Segerberg Semantics
1. Auflage 2013
ISBN: 978-3-11-032366-5
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

A Formal Philosophical Inquiry into Chellas-Segerberg Semantics

E-Book, Englisch, Band 21, 348 Seiten

Reihe: LogosISSN

ISBN: 978-3-11-032366-5
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Conditional structures lie at the heart of the sciences, humanities, and everyday reasoning. This is why conditional logics – logics specifically designed to account for natural language conditionals – are an active, interdisciplinary area. Discussing a wide range of topics, this book gives a formal and a philosophical account of indicative and counterfactual conditionals in terms of Chellas-Segerberg semantics.
Unterhuber Possible Worlds Semantics for Indicative and Counterfactual Conditionals? jetzt bestellen!

Zielgruppe


Philosophers, Libraries, Institutes


Autoren/Hrsg.


Weitere Infos & Material


1;Preface;11
2;I Foundational Issues ;1
2.1;Arguments for Conditional Logics;17
2.1.1;The Framework of My Investigation;18
2.1.2;Indicative Conditionals;18
2.1.3;Counterfactual Conditionals;24
2.1.4;Normic Conditionals;26
2.1.4.1;The Generic Case;27
2.1.4.2;The Qualification Problem;29
2.1.4.3;The Propositional Case;33
2.1.4.4;The Role of Normic Conditionals;35
2.1.5;Conversational Implicatures;36
2.2;The Conditional Logic Project in an Interdisciplinary Context and Default Logics;41
2.2.1;The Conditional Logic Project in an Interdisciplinary Context;41
2.2.1.1;The Conditional Logic Project;43
2.2.1.2;The Linguistics of Conditionals Project;43
2.2.1.3;The Philosophy of Conditionals Project;44
2.2.1.4;The Psychology of Reasoning Project;45
2.2.1.5;The Non-Monotonic Logic Project;47
2.2.2;Non-Monotonic Logics, Defaults Logics, and Conditional Logics;48
2.2.2.1;A Motivation for the Study of Non-Monotonic Logics;48
2.2.2.2;Reiter Defaults;50
2.2.2.3;Default Logics, Non-Monotonic Rules, and Inductive Inferences ;52
2.2.2.4;Types of Non-Derivability Conditions and the Rule of Substitution;58
2.2.2.5;Model Theory, Proof Theory, and Axiomatization of Default Logics;61
2.2.2.6;Conditional Logics and Default Logics;62
2.3;Possible Worlds Semantics and Probabilistic Semantics for Indicative Conditionals: a Survey and a Defense of Possible Worlds Semantics;67
2.3.1;Outline of My Defense of Possible Worlds Semantics for Indicative Conditionals and the Core Idea of Chellas-Segerberg Semantics;69
2.3.2;Possible Worlds Ordering Semantics for Conditionals: D. Lewis' and Kraus et al.'s Semantics and Related Approaches;72
2.3.3;The Ramsey Test, Stalnaker Semantics, and a General Ramsey Test Requirement;84
2.3.3.1;Ramsey's Original Proposal;85
2.3.3.2;Stalnaker's Version of the Ramsey Test;87
2.3.3.3;Stalnaker Models;88
2.3.3.4;Stalnaker Semantics, Set Selection Semantics, and Chellas-Segerberg Semantics ;91
2.3.3.5;Contrasting Ramsey Test Interpretations of Conditionals and Ordering Semantics;93
2.3.3.6;Stalnaker Semantics, Conditional Consistency Criteria, and the Principle of Conditional Excluded Middle;96
2.3.3.7;Bennett's Version of the Ramsey Test;102
2.3.3.8;A General Ramsey Test Requirement;103
2.3.4;Indicative and Counterfactual Conditionals and Conditional Logics;105
2.3.4.1;Criteria for Distinguishing Indicative and Counterfactual Conditionals;106
2.3.4.2;Bridge Principles and Logics for Indicative and Counterfactual Conditionals;110
2.3.4.3;Subjective and Objective Interpretations of Indicative and Counterfactual Conditionals and the Ramsey Test;114
2.3.5;Fundamental Issues of Probabilistic Approaches to Conditional Logic;117
2.3.5.1;Subjective and Objective Probabilistic Semantics and the Principle of Total Evidence;118
2.3.5.2;The Stalnaker Thesis, the Ramsey Test, and Conditional or Non-Conditional Probabilities as Primitive;120
2.3.5.3;Languages of a Probabilistic Conditional Logic;123
2.3.5.4;Further Reasons for the Restriction of Languages of Probabilistic Conditional Logics;125
2.3.5.5;Propositions, NTV (``No Truth Value''), and Conditional Logic Languages;127
2.3.6;Adams' Probabilistic P Systems;131
2.3.6.1;The P Systems: Systems P, P*, and P+;132
2.3.6.2;Threshold Semantics;139
2.3.6.3;Adams' System P and Schurz's Modification;139
2.3.6.4;Possible Worlds Semantics for (Indicative) Conditionals and Quasi Truth Value Assignments in Adams' Probabilistic Semantics;148
2.3.7;D. Lewis' Triviality Result and Logics for Indicative Conditionals;155
2.3.7.1;D. Lewis' Triviality Result;156
2.3.7.2;Triviality due to Iterations (and Nestings) of Conditional Formulas;161
2.3.7.3;D. Lewis' Triviality Result, Restrictions of Languages, and Truth Value Accounts of Indicative Conditionals;163
2.3.7.4;Conclusion;166
2.3.8;Bennett's Gibbardian Stand-Off Argument;166
2.3.8.1;Bennett's Extended Gibbardian Stand-Off Argument;167
2.3.8.2;A Criticism of Bennett's Gibbardian Stand-Off Argument;171
2.3.8.3;Summary;174
2.3.9;Conclusion;175
3;II Formal Results for Chellas-Segerberg Semantics;175
3.1;Formal Framework;179
3.1.1;Why Chellas-Segerberg Semantics?;179
3.1.2;Proof-Theoretic Notions;180
3.1.2.1;Languages LCL, LCL-, LrCL, LrCL*, and LrrCL;180
3.1.2.2;Logics;188
3.1.2.3;Non-Monotonicity;189
3.1.2.4;Consistency and Maximality;190
3.1.2.5;A Propositional Basis for Conditional Logics;190
3.1.2.6;System CK;191
3.1.2.7;A Further Axiomatization of System CK;193
3.1.3;Model-Theoretic Notions;195
3.1.3.1;Chellas Frames and Chellas Models;196
3.1.3.2;Chellas Models and Frames and Kripke Semantics;198
3.1.3.3;Segerberg Frames and Segerberg Models;202
3.1.3.4;Validity, Logical Consequence, and Satisfiability;204
3.1.3.5;Notions of Frame Correspondence;207
3.1.3.6;Standard and Non-Standard Chellas Models and Segerberg Frames;209
3.1.3.7;Notions of Soundness and Completeness;210
3.2;Frame Correspondence for a Lattice of Conditional Logics;219
3.2.1;Non-Trivial Frame Conditions for a Lattice of Conditional Logics;221
3.2.2;The Notions of Trivial and Non-Trivial Frame Conditions;227
3.2.2.1;A Translation Procedure from Axiom Schemata to Trivial Frame Conditions;228
3.2.2.2;A Non-Triviality Criterion;231
3.2.3;Chellas Frame Correspondence Proofs;233
3.2.3.1;System P;233
3.2.3.2;Extensions of System P;236
3.2.3.3;Weak Probability Logic (Threshold Logic);237
3.2.3.4;Monotonic Principles;239
3.2.3.5;Bridge Principles;241
3.2.3.6;Collapse Conditions Material Implication;243
3.2.3.7;Traditional Extensions;244
3.2.3.8;Iteration Principles;246
3.3;Soundness and Completeness for a Lattice of Conditional Logics;249
3.3.1;General Overview;249
3.3.1.1;Focus of the Completeness Proofs;249
3.3.1.2;Proofs for Segerberg Frame Completeness and Chellas Frames Completeness;251
3.3.2;Singleton Frames for CS Semantics;255
3.3.3;Soundness w.r.t. Classes of Chellas Frames;257
3.3.4;Standard Segerberg Frame Completeness;258
3.3.4.1;General Principles;258
3.3.4.2;Canonical Models;259
3.3.4.3;Canonicity Proofs for Individual Principles;262
3.4;Chellas-Segerberg Semantics for Indicative and Counterfactual Conditionals;273
3.4.1;The Basic Chellas-Segerberg Systems (Systems CK and CKR);276
3.4.1.1;Objective and Subjective Interpretations of Chellas-Segerberg Semantics;277
3.4.1.2;Alternative Axiomatizations of System CKR;285
3.4.2;Conditional Logics without Bridge Principles;287
3.4.2.1;System C;287
3.4.2.2;System CL;295
3.4.2.3;System P;295
3.4.2.4;System R;303
3.4.2.5;D. Lewis' System V;306
3.4.2.6;Monotonic Systems without Bridge Principles (Systems CM and M);314
3.4.3;Conditional Logics with Bridge Principles;322
3.4.3.1;Adams' System P*;322
3.4.3.2;D. Lewis' System VC;328
3.4.3.3;Stalnaker's System S;329
3.4.3.4;The Material Collapse System MC;331
3.4.4;Summary;336
3.5;Concluding Remarks;339
3.6;References;343


Matthias Unterhuber, University of Düsseldorf, Germany.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.