Buch, Englisch, 208 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Buch, Englisch, 208 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
ISBN: 978-981-13-4765-8
Verlag: Springer Nature Singapore
The book presents theory and algorithms for secure networked inference in the presence of Byzantines. It derives fundamental limits of networked inference in the presence of Byzantine data and designs robust strategies to ensure reliable performance for several practical network architectures. In particular, it addresses inference (or learning) processes such as detection, estimation or classification, and parallel, hierarchical, and fully decentralized (peer-to-peer) system architectures. Furthermore, it discusses a number of new directions and heuristics to tackle the problem of design complexity in these practical network architectures for inference.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
Weitere Infos & Material
Chapter 1 Introduction.- Chapter 2 Conventional Inference theories.- Chapter 3 Distributed Detection in Networks.- Chapter 4 Distributed Estimation and Target Localization.- Chapter 5 Distributed Classification and Target Tracking.- Chapter 6 New Research Directions Discussion and conclusions.




